Abstract simultation of ODEs

Athénaïs Vaginay Université de Caen

DEAB @ Le Havre — 2025 June 17

Modelling biology with reaction networks

$$\mathcal{R} = \{\mathcal{R}_i : \mathcal{R}_i \xrightarrow{e_i} \mathcal{P}_i \mid i = 1 \dots m\}$$

reaction, reactants, products, kinetics

$$\mathcal{E} xample - \mathcal{E} xample -$$

Ordinary Differential Equations (ODE)
$$\left\{ \dot{X} = \sum_{i \in 1...m} e_i \times (P_i(X) - R_i(X)) \mid X \in S \right\}$$

(numerical) solving \rightarrow continuous time and values

- Kinetic parameters are hard to measure / estimate
- Can't picture the whole behavior of the systems (simulation with an infinitly many combinations of initial conditions)
- Technical problems: which integration method ? hyperparameters ? Stiffness, float representation...
- We lose the causality of events (except with Euler, which is inefficient), necessary to reason qualitatively on the dynamics

$$\boldsymbol{\mathcal{R}}_{enz} = \begin{cases} \boldsymbol{\mathcal{R}}_{on} : S + E \xrightarrow{\boldsymbol{e}_{on}} C \\ \boldsymbol{\mathcal{R}}_{off} : C \xrightarrow{\boldsymbol{e}_{off}} S + E \\ \boldsymbol{\mathcal{R}}_{cat} : C \xrightarrow{\boldsymbol{e}_{cat}} E + 2 \times P \end{cases}$$

- Kinetic parameters are hard to measure / estimate
- Can't picture the whole behavior of the systems (simulation with an infinitly many combinations of initial conditions)
- Technical problems: which integration method ? hyperparameters ? Stiffness, float representation...
- We lose the causality of events (except with Euler, which is inefficient), necessary to reason qualitatively on the dynamics

$$\mathcal{R}_{enz} = \begin{cases} \mathcal{R}_{on} : S + E \xrightarrow{k_{on} \times S \times E} C \\ \mathcal{R}_{off} : C \xrightarrow{k_{off} \times C} S + E \\ \mathcal{R}_{cat} : C \xrightarrow{k_{cat} \times C} E + 2 \times P \end{cases}$$

- Kinetic parameters are hard to measure / estimate
- Can't picture the whole behavior of the systems (simulation with an infinitly many combinations of initial conditions)
- Technical problems: which integration method ? hyperparameters ? Stiffness, float representation...
- We lose the causality of events (except with Euler, which is inefficient), necessary to reason qualitatively on the dynamics

$$\mathcal{R}_{enz} = \begin{cases} \mathcal{R}_{on} : S + E \xrightarrow{10^{6} \times S \times E} C \\ \mathcal{R}_{off} : C \xrightarrow{0.2 \times C} S + E \\ \mathcal{R}_{cat} : C \xrightarrow{0.1 \times C} E + 2 \times P \end{cases}$$

- Kinetic parameters are hard to measure / estimate
- Can't picture the whole behavior of the systems (simulation with an infinitly many combinations of initial conditions)
- Technical problems: which integration method ? hyperparameters ? Stiffness, float representation...
- We lose the causality of events (except with Euler, which is inefficient), necessary to reason qualitatively on the dynamics

Example

Point moving along an axis : $\dot{a} = 0$; $\dot{v} = a$; $\dot{x} = v$ Analytical solution : a(t) = 1; v(t) = t; $x(t) = t^2/2$

- ▶ Kinetic parameters are hard to measure / estimate
- Can't picture the whole behavior of the systems (simulation with an infinitly many combinations of initial conditions)
- Technical problems: which integration method ? hyperparameters ? Stiffness, float representation...
- We lose the causality of events (except with Euler, which is inefficient), necessary to reason qualitatively on the dynamics

- ▶ Kinetic parameters are hard to measure / estimate
- Can't picture the whole behavior of the systems (simulation with an infinitly many combinations of initial conditions)
- Technical problems: which integration method ? hyperparameters ? Stiffness, float representation...
- We lose the causality of events (except with Euler, which is inefficient), necessary to reason qualitatively on the dynamics

Problem with numerical solving – causality

We lose the causality of events (except with Euler, which is inefficient), necessary to reason qualitatively on the dynamics

Example Point moving along an axis : $\dot{a} = 0$; $\dot{v} = a$; $\dot{x} = v$ Analytical solution : a(t) = 1; v(t) = t; $x(t) = t^2/2$

Analytical solution

t	0	1	2	3
а	1	1	1	1
v	0	1	2	3
х	0	0.5	2	4.5

Problem with numerical solving – causality

We lose the causality of events (except with Euler, which is inefficient), necessary to reason qualitatively on the dynamics

Example -Point moving along an axis : $\dot{a} = 0$; $\dot{v} = a$; $\dot{x} = v$ Analytical solution : a(t) = 1; v(t) = t; $x(t) = t^2/2$ Analytical solution and clever solvers* 0 1 2 3 t – a 1 1 1 1 v 0 1 2 3 x 0 0.5 2 4.5 adams. stiff. rk. rkf. fix. in Scilab

Problem with numerical solving – causality

We lose the causality of events (except with Euler, which is inefficient), necessary to reason qualitatively on the dynamics

Example												
Point moving along an axis : $a = 0$; $v = a$; $x = v$												
Analytical solution : $a(t) = 1$; $v(t) = t$; $x(t) = t^2/2$												
Analytical solution and clever solvers* Euler with $\Delta = 1$										= 1		
- J -	t	0	1	2	3			t	0	1	2	3
	2	1	1	1	1	_		а	1	1	1	1
	u 	0	1	2	2			v	0	1	2	3
	v	0	1	2				v	0	0	1	2
	Х	0	0.5	2	4.5			х	0	0	T	3

* adams, stiff, rk, rkf, fix, in Scilab

Euler algo:

$$\mathcal{V} = \left\{ X, \dot{X}, \underset{\text{next}}{X}, \underset{\text{next}}{\dot{X}} \mid X \in \mathcal{S} \right\}, \text{ interpreted over reals.}$$
(1) X
(2) $\dot{X} = f\left(\mathbb{R}^{|\mathcal{S}|}_{+}\right)$
(3) $\underset{\text{next}}{X} = X + \dot{X} \times \Delta$

$$\begin{split} & \text{Euler algo:} \\ & \mathcal{V} = \left\{ \textbf{X}, \dot{\textbf{X}}, \underset{\text{next}}{\textbf{X}}, \underset{\text{next}}{\dot{\textbf{X}}} \mid \textbf{X} \in \mathcal{S} \right\} \text{, interpreted over reals.} \\ & \textbf{(1) } \textbf{X} \qquad \textbf{(2) } \dot{\textbf{X}} = f \left(\mathbb{R}_{+}^{|\mathcal{S}|} \right) \qquad \textbf{(3) } \underset{\text{next}}{\textbf{X}} = \textbf{X} + \dot{\textbf{X}} \times \Delta \end{split}$$

 Analogy with abstract interpretation of programs [Cousot, Cousot, 1977]

 \blacktriangleright Causal relationship encoded in a first order logic formula ϕ FOBNN: First-Order Boolean Networks with Nondeterm. updates

▶ A model of
$$\phi$$
 on $\mathbb{S} = \{-1, 0, 1\}$ projected on $S \cup \underset{next}{S}$

Euler algo:

$$\mathcal{V} = \left\{ X, \dot{X}, \underset{\text{next}}{X}, \underset{\text{next}}{\dot{X}} \mid X \in \mathcal{S} \right\}, \text{ interpreted over reals.}$$
(1) X
(2) $\dot{X} = f\left(\mathbb{R}^{|\mathcal{S}|}_{+}\right)$
(3) $\underset{\text{next}}{X} = X + \dot{X} \times \Delta$

 Analogy with abstract interpretation of programs [Cousot, Cousot, 1977]

 \blacktriangleright Causal relationship encoded in a first order logic formula ϕ FOBNN: First-Order Boolean Networks with Nondeterm. updates

▶ A model of ϕ on $\mathbb{S} = \{-1, 0, 1\}$ projected on $S \cup \underset{\text{next}}{S}$

Euler algo:

$$\mathcal{V} = \left\{ X, \dot{X}, \underset{\text{next}}{X}, \underset{\text{next}}{\dot{X}} \mid X \in \mathcal{S} \right\}, \text{ interpreted over reals.}$$
(1) X
(2) $\dot{X} = f\left(\mathbb{R}^{|\mathcal{S}|}_{+}\right)$
(3) $\underset{\text{next}}{X} = X + \dot{X} \times \Delta$

 Analogy with abstract interpretation of programs [Cousot, Cousot, 1977]

 \blacktriangleright Causal relationship encoded in a first order logic formula ϕ FOBNN: First-Order Boolean Networks with Nondeterm. updates

▶ A model of ϕ on $\mathbb{S} = \{-1, 0, 1\}$ projected on $S \cup \underset{next}{\mathcal{S}}$

Euler algo:

$$\mathcal{V} = \left\{ X, \dot{X}, \underset{\text{next}}{X}, \dot{X}_{\text{next}}, \dot{X} \mid X \in \mathcal{S} \right\}, \text{ interpreted over reals.}$$
(1) X
(2) $\dot{X} = f\left(\mathbb{R}^{|\mathcal{S}|}_{+}\right)$
(3) $\underset{\text{next}}{X} = X + \dot{X} \times \Delta$

 Analogy with abstract interpretation of programs [Cousot, Cousot, 1977]

 \blacktriangleright Causal relationship encoded in a first order logic formula ϕ FOBNN: First-Order Boolean Networks with Nondeterm. updates

▶ A model of ϕ on $\mathbb{S} = \{-1, 0, 1\}$ projected on $S \cup \underset{next}{\mathcal{S}}$

$$\begin{split} & \text{Euler algo:} \\ & \mathcal{V} = \left\{ \textbf{X}, \dot{\textbf{X}}, \underset{\text{next}}{\textbf{X}}, \underset{\text{next}}{\dot{\textbf{X}}} \mid \textbf{X} \in \mathcal{S} \right\} \text{, interpreted over reals.} \\ & \textbf{(1) X} \qquad \textbf{(2) } \dot{\textbf{X}} = f \left(\mathbb{R}_{+}^{|\mathcal{S}|} \right) \qquad \textbf{(3) } \underset{\text{next}}{\textbf{X}} = \textbf{X} + \dot{\textbf{X}} \times \Delta \end{split}$$

 Analogy with abstract interpretation of programs [Cousot, Cousot, 1977]

 \blacktriangleright Causal relationship encoded in a first order logic formula ϕ FOBNN: First-Order Boolean Networks with Nondeterm. updates

▶ A model of ϕ on $\mathbb{S} = \{-1, 0, 1\}$ projected on $S \cup \underset{next}{\mathcal{S}}$

Example on \mathcal{R}_{enz} – reactions and odes

 $\mathcal{S} = \{\mathsf{S},\mathsf{E},\mathsf{C},\mathsf{P}\}$

e: mass action law

5 / 14

Example on \mathcal{R}_{enz} – FOBNN

$$\begin{split} \dot{S} &= - \ e_{on} + \ e_{off} & \wedge \ \dot{S} &= - \ e_{on} + e_{off} \\ & \wedge \ \dot{E} &= - \ e_{on} + \ e_{off} + \ e_{cat} & \wedge \ \dot{E} &= - \ e_{on} + e_{off} + \ e_{cat} \\ & \wedge \ \dot{C} &= \ e_{on} - \ e_{off} - \ e_{cat} & \wedge \ \dot{C} \\ & \wedge \ \dot{P} &= \ e_{cat} & \wedge \ \dot{P} \\ & & & & & & \\ \end{split}$$

$$\begin{array}{lll} \wedge & \underset{\mathrm{next}}{\mathrm{S}} = & \mathrm{S} + \mathring{\mathrm{S}} & \wedge & \mathrm{S} \leq \underset{\mathrm{next}}{\mathrm{S}} \\ & & \underset{\mathrm{next}}{\mathrm{E}} = & \mathrm{E} + \mathring{\mathrm{E}} & \wedge & \mathrm{E} \leq \underset{\mathrm{next}}{\mathrm{E}} \\ & & \underset{\mathrm{next}}{\mathrm{C}} = & \mathrm{C} + \mathring{\mathrm{C}} & \wedge & \mathrm{C} \leq \underset{\mathrm{next}}{\mathrm{C}} \\ & & & \underset{\mathrm{next}}{\mathrm{P}} = & \mathrm{P} + \mathring{\mathrm{P}} & \wedge & \mathrm{P} \leq \underset{\mathrm{next}}{\mathrm{P}} \end{array}$$

e: mass action law

6 / 14

Example on \mathcal{R}_{enz} – computed transition graph

with mass action law constraint

From FOBNN to Propositional BNN

FOBNN: First-Order Boolean Networks with Nondeterministic updates terms + existential quantifiers + the finite domain of sign

From FOBNN to Propositional BNN

FOBNN: First-Order Boolean Networks with Nondeterministic updates terms + existential quantifiers + the finite domain of sign ⇒ satisfiability is decidable and an FOBNN can be effectively translated into a propositional logic formula.

Joint work with Hans-Jörg Schurr (univ. lowa) : sound and complete translation to propositional logics + implementation with a SAT solver.

- Fast enumeration of transitions
- Find fixed-points (inescapable configurations)

Summary of the workflow

An ODE system \rightarrow an FO formula \rightarrow an equisatifiable propositional formula \rightarrow a transition graph \rightarrow model checking

Figures inspired from [Saint-Exupery 1943]

- hat is not complete nor tight
- snake is complete and tight.
- FOBNN are complete but not tight (indeterminacies)

 $\boldsymbol{\mathcal{R}}_{\mathsf{enz}}$ without the mass action constraint

Conclusion

- Abstract simulation to reason qualitatively on the dynamics of ODEs
- ► FOBNN soundly overapproximate the ODEs traces with Euler
- ► Translation to propositional logics → SAT-based model checking technics

Future work

- Use FO/P-BNN to anticipate other dynamical properties (beyond fixed-points : limit cycles, stability of steady-states)
- Refine the abstraction (eg : add logical consequences of the equations)
- Further comparison to other Boolean abstraction of biological systems (Boolean semantics of Biocham, Boolean automata networks)

Thank you for your attention.

FO to P

- flatten the equations
- translate the equations using 2 propositional variables for each term.

References I

[Cousot, Cousot, 1977]

P. Cousot, R. Cousot,

Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints, 1977

▶ [Fages, Soliman, 2008a]

F. Fages, S. Soliman,

Abstract Interpretation and Types for Systems Biology, *Theoretical Computer Science*, vol. 403, pp. 52–70, 2008

▶ [Hoops et al., 2006]

S. Hoops et al.

COPASI—a COmplex PAthway SImulator, Bioinformatics, vol. 22, pp. 3067–3074 2006

References II

▶ [Niehren et al., 2022]

J. Niehren et al.

Abstract Simulation of Reaction Networks via Boolean Networks CMSB: International Conference on Computational Methods in Systems Biology 2022,

▶ [Paulevé et al. 2020]

L. Paulevé, Juri. Kolcak, T. Chatain, S. Haar

Reconciling qualitative, abstract, and scalable modeling of biological networks, 2020

▶ [Vaginay 2023]

A. Vaginay

Synthesis of Boolean Networks from the Structure and Dynamics of Reaction Networks,

2023