Simulation and synthesis of formal models of biological systems

Athénaïs Vaginay Post-doc in MTV (dep. M2F), with Loïc Paulevé

Sémidoc @ LaBRI, Bdx — 2024 July 19

Outline

- 1. My curriculum :)))
- 2. A light intro to systems biology and formal models in general
- 3. Formal methods for the simulation of reaction networks
- 4. Formal methods for the simulation of Boolean networks
- 5. Formal methods for the synthesis of Boolean networks
- 6. Conclusion

Curriculum

Me and my background

Currently (for two more weeks): post-doc in MTV, under the supervision of Loïc Paulevé.

- Medical studies, 1 year
- Biology, licence
- Bio-info, master + "ingénieure d'études" a few months
- Theoretical systems biology (~ computer science), PhD, postdoc, ...

Reach out: room B353, athenais.vaginay@labri.fr

My first time in this amphi: in 2021 (CMSB conference).

Introduction

Systems biology

Formal modelling and reasoning about biological systems

A model = an abstract representation (abbreviated and convenient) of the reality (more complex and detailed)

A set species of species of interest genes, proteins, cells, animals...

Questions

How does the system evolve?

Is the population of some cell type stable over time?

How to control the system?

Cure a pathological system Produce more of some species of interest

The workflow of system biology [Kohl et al., 2010]

The workflow of system biology [Kohl et al., 2010]

The workflow of system biology [Kohl et al., 2010]

The workflow of system biology [Kohl et al., 2010]

The workflow of system biology [Kohl et al., 2010]

The workflow of system biology [Kohl et al., 2010]

The workflow of system biology [Kohl et al., 2010]

The workflow of system biology [Kohl et al., 2010]

The workflow of system biology [Kohl et al., 2010]

Synthesis:

from available knowledge and data about the structure and the dynamics

parameter fitting task find models that optimise some criteria Experiment: e.g. simulation = execution of the model

A zoo of modelling approaches

Reaction network

continuous time Markov chain

ODEs

statistical models

Petri net

Boolean transition system

informal diagrams

Boolean automata network

A zoo of modelling approaches

Reaction network

continuous time Markov chain

ODEs

statistical models

Petri net

Boolean transition system

informal diagrams

Boolean automata network

Formal methods for the simulation of reaction networks

Static analysis of a reaction network

Static analysis = derive correct conclusions about the dynamics without having to actually simulate the model.

FM for RN simulation

Static analysis of a reaction network

Static analysis = derive correct conclusions about the dynamics without having to actually simulate the model.

Static analysis of a reaction network

Static analysis = derive correct conclusions about the dynamics without having to actually simulate the model.

6 / 13

Reaction network

 $\boldsymbol{\mathcal{R}} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$

Reaction network $\mathcal{R} = \{\mathcal{R}_i : \mathcal{R}_i \xrightarrow{e_i} \mathcal{P}_i\}_{i=1...m}$ $A + B \xrightarrow{e} 2C$

Reaction network $\mathcal{R} = \{\mathcal{R}_i : \mathcal{R}_i \xrightarrow{e_i} \mathcal{P}_i\}_{i=1...m}$ $A + B \xrightarrow{e} 2C$

Continuous Time Markov chain

Ordinary Differential Equations

Petri net

Boolean transition system

Reaction network $\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$ $A + B \xrightarrow{e} 2C$

Continuous Time Markov chain

Ordinary Differential Equations continuous time, continuous values

 $\dot{A} = \dot{B} = -e; \dot{C} = 2e$

Petri net

Boolean transition system

Reaction network $\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$ $A + B \xrightarrow{e} 2C$

Continuous Time Markov chain

continuous time, discrete values p(e) : A - -; B - -; C += 2 Ordinary Differential Equations continuous time, continuous values

 $\dot{A} = \dot{B} = -e; \dot{C} = 2e$

Petri net

Boolean transition system

Reaction network $\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$ $A + B \xrightarrow{e} 2C$

Continuous Time Markov chain continuous time, discrete values p(e) : A - -; B - -; C += 2 Ordinary Differential Equations continuous time, continuous values

 $\dot{A} = \dot{B} = -e; \dot{C} = 2e$

Petri net discrete time, discrete values *A*--; *B*--; *C*+=2

Boolean transition system

7 / 13

Reaction network $\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$ $A + B \xrightarrow{e} 2C$

Continuous Time Markov chain continuous time, discrete values p(e) : A - -; B - -; C += 2

Ordinary Differential Equations continuous time, continuous values

 $\dot{A} = \dot{B} = -e; \dot{C} = 2e$

Petri net discrete time, discrete values *A*--; *B*--; *C*+=2

Boolean transition system discrete time, boolean values

$$\begin{array}{c} A,B \text{ in } \{0,1\}; C \text{ in } \{1\} \\ 110 \\ 111 \\ 111 \\ 001 \end{array}$$

Abstract simulation = derive correct conclusions using a simpler simu. of the model [Cousot, Cousot, 1977], [Fages, Soliman, 2008a]

Formal methods for the simulation of Boolean networks

A BN f is a function $\mathbb{B}^n \to \mathbb{B}^n$ usually expressed in propositional logics.

The dynamics of a Boolean network using a SAT solveur A BN f is a function $\mathbb{B}^n \to \mathbb{B}^n$ usually expressed in propositional logics.

Example
$$x'_1 = (x_1 \land x_2 \land x_3) \land x'_2 = (x_1 \lor x_3) \land x'_3 = ((x_2 \land x_3) \lor (x_1 \land x_2 \land x_3) \lor (x_1 \land x_2 \land x_3))$$

A BN *f* is a function $\mathbb{B}^n \to \mathbb{B}^n$ usually expressed in propositional logics. **Transition graph**: $G = (\mathbb{B}^n, E \subseteq \mathbb{B}^n \times \mathbb{B}^n)$. Is $(x, x') \in G$?

A BN *f* is a function $\mathbb{B}^n \to \mathbb{B}^n$ usually expressed in propositional logics. **Transition graph**: $G = (\mathbb{B}^n, E \subseteq \mathbb{B}^n \times \mathbb{B}^n)$. Is $(x, x') \in G$?

A BN *f* is a function $\mathbb{B}^n \to \mathbb{B}^n$ usually expressed in propositional logics. **Transition graph**: $G = (\mathbb{B}^n, E \subseteq \mathbb{B}^n \times \mathbb{B}^n)$. Is $(x, x') \in G$? **Fixpoint**: a configuration $x \in \mathbb{B}^n$ such that f(x) = x.

A BN *f* is a function $\mathbb{B}^n \to \mathbb{B}^n$ usually expressed in propositional logics. **Transition graph**: $G = (\mathbb{B}^n, E \subseteq \mathbb{B}^n \times \mathbb{B}^n)$. Is $(x, x') \in G$? **Fixpoint**: a configuration $x \in \mathbb{B}^n$ such that f(x) = x. **Trapspace**: a subcube *t* of \mathbb{B}^n such that $\forall x \in t : f(x) \in t$

Boolean networks as concurent systems The impact of updates

A Boolean network is a function $f : \mathbb{B}^n \to \mathbb{B}^n$. Alternatively, f consists of n local functions $\mathbb{B}^n \to \mathbb{B}$ (one per species in S).

Boolean networks as concurent systems The impact of updates

A Boolean network is a function $f : \mathbb{B}^n \to \mathbb{B}^n$. Alternatively, f consists of n local functions $\mathbb{B}^n \to \mathbb{B}$ (one per species in S).

The update mode dictates which components can be updated at each time.

Boolean networks as concurent systems The impact of updates

A Boolean network is a function $f : \mathbb{B}^n \to \mathbb{B}^n$. Alternatively, f consists of n local functions $\mathbb{B}^n \to \mathbb{B}$ (one per species in S).

The update mode dictates which components can be updated at each time.

Strongly impacts the dynamics \rightarrow adapt your SAT constraints accordingly

Formal methods for the synthesis of Boolean networks

$$\begin{cases} \textbf{Boolean network} \\ \left\{ f_X : \mathbb{B}^{|\mathcal{S}|} \to \mathbb{B} \mid X \in \mathcal{S} \right\} \\ \text{influence graph} \\ ? \end{cases}$$

10 / 13

100 is a fixpoint $000 \longrightarrow 011 \longrightarrow 111 \longrightarrow 110$

dynamics specifications

Tool: ASP (Answer set programming) provides an expressive modeling language + fast solvers Check BoNesis from Loïc Paulevé and co.! https://bnediction.github.io/bonesis/

- A Boolean network *f* consists of *n* local functions Bⁿ → B (one per species in S).
- BN synthesis may be UNSAT because of conflicting dynamics specifications.

- A Boolean network *f* consists of *n* local functions Bⁿ → B (one per species in S).
- BN synthesis may be UNSAT because of conflicting dynamics specifications.

- A Boolean network *f* consists of *n* local functions Bⁿ → B (one per species in S).
- BN synthesis may be UNSAT because of conflicting dynamics specifications.
- To remove as few conflicting specifications as possible, find maximum independent sets in the conflict graph.

- A Boolean network *f* consists of *n* local functions Bⁿ → B (one per species in S).
- BN synthesis may be UNSAT because of conflicting dynamics specifications.
- To remove as few conflicting specifications as possible, find maximum independent sets in the conflict graph.

- A Boolean network *f* consists of *n* local functions Bⁿ → B (one per species in S).
- BN synthesis may be UNSAT because of conflicting dynamics specifications.
- To remove as few conflicting specifications as possible, find maximum independent sets in the conflict graph.

Conclusion and perspectives

To sum up

To sum up

My research questions

Thank you for your attention.

From RN to BN: the big picture

- 1. Formalize the relationship between RN and BN
- 2. Use BNs to facilitate some analyses on RN
- 3. Improve the BN synthesis methods

Perspectives

 Formalize the relationship between RN and BN Two conjectures to investigate(*), reverse process(*)

2. Facilitate RN analyses

Make SBML2BNET easy to use, use more evaluation criteria, include more knowledge in the synthesis, analyse FO-BNN themselves (process more RN, compute attractors(*))

3. Improve the BN synthesis methods

Investigate, in a controled environnement

- when we can't fullfill the constraints(*)
- overfitting to *the* sequence of configurations?
- impact of the choice of the binarisation procedure and error measure

Perspectives

- Formalize the relationship between RN and BN Two conjectures to investigate(*), reverse process(*)
- 2. Facilitate RN analyses

Make SBML2BNET easy to use, use more evaluation criteria, include more knowledge in the synthesis, analyse FO-BNN themselves (process more RN, compute attractors(*))

3. Improve the BN synthesis methods

Investigate, in a controled environnement

- when we can't fullfill the constraints(*)
- overfitting to the sequence of configurations?
- impact of the choice of the binarisation procedure and error measure

Minimal DNF

Given a set S of inputs for which a function f eval. to 1, each minimal-by-inclusion set of nodes that covers exactly S forms a (subset-)minimal DNF of f.

f might have several (subset-)minimal DNFs.

Example: $S = \{abc, \overline{abc}, \overline{abc}, \overline{abc}, \overline{abc}\}$ (light green) $\sim \{\overline{ab}, c\}$ (dark green)

References I

[Cousot, Cousot, 1977]

P. Cousot, R. Cousot,

Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints, 1977

▶ [Bornholdt, 2005]

S. Bornholdt Less Is More in Modeling Large Genetic Networks, 2005

[Fages, Soliman, 2008a] F. Fages, S. Soliman, Abstract Interpretation and Types for Systems Biology, *Theoretical Computer Science*, vol. 403, pp. 52–70, 2008

 [Fages, Soliman, 2008b]
 F. Fages, S. Soliman,
 From Reaction Models to Influence Graphs and Back: A Theorem, Lecture Notes in Computer Science, pp. 90–102 2008

References II

- [Hoops et al., 2006]
 S. Hoops et al.
 COPASI—a COmplex PAthway Simulator,
 - Bioinformatics, vol. 22, pp. 3067-3074 2006
- [Kohl et al., 2010]
 P. Kohl et al.
 Systems Biology: An Approach,
 Clinical Pharmacology & Therapeutics vol. 88-1 pp. 25–33 2010,

 [Lähdesmäki et al., 2003]
 H. Lähdesmäki et al.
 On Learning Gene Regulatory Networks under the Boolean Network Model, Machine Learning, vol. 52-1 pp. 147–167 2003,

[Liang et al., 1998]
 S. Liang et al.
 REVEAL, a General Reverse Engineering Algorithm for Inference of Genetic Network Architectures
 Pacific Symposium on Biocomputing. pp. 18–29, 1998,

References III

[Malik-Sheriff et al., 2020] R. Malik-Sheriff et al.

BioModels—15 Years of Sharing Computational Models in Life Science *Nucleic Acids Research* vol. 48-D1, pp. D407-D415, 2020

[Niehren et al., 2022]

J. Niehren et al.

Abstract Simulation of Reaction Networks via Boolean Networks CMSB: International Conference on Computational Methods in Systems Biology 2022,

[Ostrowski et al., 2016]

M. Ostrowski et al.

Boolean Network Identification from Perturbation Time Series Data Combining Dynamics Abstraction and Logic Programming *Biosystems* vol. = 149, pp. 139–153, 2016

References IV

▶ [Vaginay et al., 2021]

A. Vaginay, et al.

Automatic Synthesis of Boolean Networks from Biological Knowledge and Data

Communications in Computer and Information Science pp. 156–170, 2021

▶ [Vaginay et al., 2021]

A. Vaginay, et al. From Quantitative SBML Models to Boolean Networks Complex Networks & Their Applications X 2021

▶ [Vaginay et al., 2022]

A. Vaginay, et al.

From Quantitative SBML Models to Boolean Networks *Applied Network Science* vol. 7-1 pp. 1–23, 2022