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Systems Biology
Formal modelling and reasoning about biological systems

A set of species of interest genes, proteins, cells, animals…

Questions
How does the system evolve?
Is the population of some cell
type stable over time?

How to control the system?
Cure a pathological system
Produce more of some species of
interest
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The workflow of system biology [Kohl et al., 2010]
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Definition (Model)
Abstract representation (abbreviated and convenient)
of the reality (more complex and detailed).
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A dichotomic zoo of modelling approaches
Bayesian network

Constraint based model

Petri net

Process algebra

A + B ! C

Reaction network

((b(x , de)[E ]) || (B(y , dI )[I ]))

bh(x , dE )bh(y , dI )(E || I )

a b

p q

c

a b

c d e

Cellular automata

Hybrid system
dx
dt

dx
dt

dx
dt

Agent-based model

Differential equations

Boolean network
a b

c d
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Principles shared across modelling approaches
Synthesis

I from available
knowledge and data
about the structure and
the dynamics

I parameter fitting task
find models that optimise
some criteria

Usage
I encodes our knowledge,

cannot be exact
I various analyses

simulation, control

Use the simplest model that contains enough information to
answer the question at hand [Bornholdt, 2005].
Boolean networks are simpler than reaction networks.

Problem statement
Automatic transformation (abstraction) of

reaction networks to Boolean networks
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From reactions to Boolean influences with guarantees
Why?
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Hypotheses

1. Use BNs to facilitate some analyses
2. Explore the formal relationship between RN and BN
3. Improve the BN synthesis methods
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Outline

1. Preliminaries on reaction networks and Boolean networks

2. My method and its guarantees (where constraints pop in)

3. Evaluation of the approach

4. Conclusion and perspectives
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Reaction networks, structure and dynamics

R = {Ri : Ri
ei−→ Pi}i=1...m

reaction, reactants, products, kinetics

Reaction graph
(S ∪R,E ⊆ (S ×R) ∪ (R× S))

Differential semantics
ordinary differential equation (ODE){

Ẋ =
∑

i∈1...m ei × (Pi (X)− Ri (X))
}

X∈S

Example
S = {A,B,C}

R1 : A + B e1−→ 2 × C

R2 : A + C e2−→ A + B

A

B CR1

R2


Ȧ = −1 × e1

Ḃ = − 1 × e1 + 1 × e2

Ċ = 2 × e1 + (−1)× e2

t

A
B

C

amount
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Ȧ = −1 × e1
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Boolean network, structure and dynamics

One transition function per species in S:{
fX : B|S| → B

}
X∈S B = {0, 1}

Influence graph
IG = (S,E ⊆ S × S, σ : E → {+,−, +−})

Transition graph (TG)
(B|S|,E ⊆ B|S| × B|S|)
general asynchronous update scheme:
P(S) \ ∅

Example
S = {A,B,C}

fA :=0
fB :=(B ∧ ¬C) ∨ (¬B ∧ C)
fC :=¬C

A

B

C

+
−

+
−

−
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Outline

1. Preliminaries on reaction networks and Boolean networks

2. My method and its guarantees (where constraints pop in)

3. Evaluation of the approach

4. Conclusion and perspectives
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From RN to BN: which constraints
RN

BN

A + B → 2 × C
A + C → A + B

?

STEP 1: Retrieve constraints from the input RN
Structure: influence graph Dynamics: Boolean transitions
1.1: syntactic parsing of the RN 1.2: ODEs simulation + binarisation

1.3: abstract simulation of the ODEs
STEP 2: BN synthesis
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Running example Renz

Ron Rcat︷ ︸︸ ︷︷ ︸︸ ︷
E+ S

eon
�
eoff

C ecat−−−−→ E+ 2× P︸ ︷︷ ︸
Roff

Its ODEs (reconstructed)
Ṡ = − eon + eoff

Ė = − eon + eoff + ecat

Ċ = eon − eoff + ecat

Ṗ = 2× ecat

Its parameters (given)

eon = 106 × E× S
eoff = 0.2× C
ecat = 0.1× C

My method and its guarantees 12 / 34



Outline
1. Preliminaries on reaction networks and Boolean networks

2. My method and its guarantees (where constraints pop in)

STEP 1: Retrieve constraints from the input reaction network
Structure: influence graph
I 1.1: syntactic parsing of the reactions

Dynamics: Boolean transitions
I 1.2: ODEs simulation + binarisation
I 1.3: abstract simulation of the ODEs [Niehren et al., 2022]

STEP 2: BN synthesis with ASK&D-BN [Vaginay et al., 2021]

3. Evaluation of the approach

4. Conclusion and perspectives

STEP 1: Retrieve an influence graph and Boolean transitions 13 / 34



STEP 1:
Retrieve an influence graph and

Boolean transitions



Which contraints to build the influence graph GR?

Constraints inspired from [Fages, Soliman, 2008b]

Y −−_ X ∈ GR if ∃R = (R , e,P) : Y ∈ R and R(X) > P(X)
Y +−_ X ∈ GR if ∃R = (R , e,P) : Y ∈ R and R(X) < P(X)

GRenz

S

E

C

P

−

−
+

−

−
+

−

+

+

+

Guaranty: Overapproximates the possible signs of ∂X
∂Y

→ capture all the direct influences between the species

STEP 1: Retrieve an influence graph and Boolean transitions 14 / 34



Which constraints to retrieve Boolean transitions from R?
Abstract simulation — Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022]
Use the rule of signs to reason on the causal relationship between the signs
(S = {−1, 0, 1}) of the variables values of the ODE system

X was above 0 and its derivative was negative
plus − plus = unknown ; nondeterminism
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Which constraints to retrieve Boolean transitions from R?
Abstract simulation — Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022]
Use the rule of signs to reason on the causal relationship between the signs
(S = {−1, 0, 1}) of the variables values of the ODE system

X
next

X X̊

11 11

11 11

10

11
1111

11

10

11
11 11

10 10

11

Impossible!

10

species values derivative value

X̊
next

X was above 0 and its derivative was negative
plus − plus = unknown ; nondeterminism

STEP 1: Retrieve an influence graph and Boolean transitions 15 / 34



Which constraints to retrieve Boolean transitions from R?
Abstract simulation — In practice

Contribution

V =
⋃

X∈S

{
X, X̊, X

next
, X̊

next

}
I Causal relationships encoded

by a first-order logic formula φ

I Solve φ on S = {−1, 0, 1}

 relation B
∣∣∣S∪S̊

∣∣∣ × B

∣∣∣∣ S
next

∪ S̊
next

∣∣∣∣
I Restrict the solutions on S ∪ S

next

 relation B|S| × B

∣∣∣∣ S
next

∣∣∣∣

Guarantee

I Keep the causalities of
changes

I Proof of correctness:
overapproximation of an
ideal Euler simulation
(perfectly adjusted time
step and no computation
error)

FOBNN: First-Order Boolean networks with nondeterministic updates
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Which constraints to retrieve Boolean transitions from R?
Abstract simulation — Example on Renz

S̊ = − eon + eoff ∧ S̊
next

= − eon
next

+ eoff
next

∧ E̊ = − eon + eoff + ecat ∧ E̊
next

= − eon
next

+ eoff
next

+ ecat
next

∧ C̊ = eon − eoff − ecat ∧ C̊
next

= eon
next

− eoff
next

− ecat
next

∧ P̊ = ecat ∧ P̊
next

= ecat
next

∧ S
next

= S + S̊ ∧ S ≤ S
next

∧ E
next

= E + E̊ ∧ E ≤ E
next

∧ C
next

= C + C̊ ∧ C ≤ C
next

∧ P
next

= P + P̊ ∧ P ≤ P
next

with
eon = 106 × S × E eoff = 0.2 × C ecat = 0.1 × C
eon
next

= 106 × S
next

× E
next

eoff
next

= 0.2 × C
next

ecat
next

= 0.1 × C
next
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Which constraints to retrieve Boolean transitions from R?
Ron Rcat︷ ︸︸ ︷︷ ︸︸ ︷

E+ S
eon
�
eoff

C ecat−−−−→ E+ 2× P︸ ︷︷ ︸
Roff

Expected transitions [SECP]:
1100 **10 ***1

Abstract simulation

Classic ODE simulation + Binarisation

Binarisation Boolean configuration sequence [SECP]

Midrange 1100 1000 1010 0010 0011 0101
Median 1100 1010 0011 0101
Mean 1100 1010 1000 0011 0101

Above 0 1100 1111 1011 1111 0111
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Outline
1. Preliminaries on reaction networks and Boolean networks

2. My method and its guarantees (where constraints pop in)

STEP 1: Retrieve constraints from the input reaction network
Structure: influence graph
I 1.1: syntactic parsing of the reactions

Dynamics: Boolean transitions
I 1.2: ODEs simulation + binarisation
I 1.3: abstract simulation of the ODEs [Niehren et al., 2022]

STEP 2: BN synthesis with ASK&D-BN [Vaginay et al., 2021]

3. Evaluation of the approach

4. Conclusion and perspectives
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ASK&D-BN [Vaginay et al., 2021]
RN

BN

A + B → 2 × C
A + C → A + B

?

structure constraints dynamics constraints

A

B

C
+

+
−

+

+
−

−

⊆

⊆

{
Ẋ
}

X∈S

010 011 111 110

A

B

C

+
−

+
−

−

1.1

1.21.3

2

A

B

C

am
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nt

time

1. Local search species-wise synthesis of all the transition functions
compatible with the given influence graph and time series

Generate candidates → Structure constraint → Dynamic
constraint → Minimality constraint

2. Global assembly produce all the possible BNs
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ASK&D-BN— Local search
Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

Search space: 23k non-redundant DNF = non-redundant disjunction
of non-redundant conjunctions
ideally: the set of minimal DNF with k inputs.

Pick a subset of non-redundant conjunctions
without subsomption and not locally-adjacent

Examples
invalid candidates: valid candidate:

(A ∧ ¬B) ∨ (A ∧ ¬B) ∨ (¬A ∧ ¬C) (A ∧ ¬B) ∨ (¬A ∧ ¬C)
(A ∧ A ∧ ¬B) ∨ (¬A ∧ ¬C)

(A) ∨ (A ∧ B)
(A ∧ B) ∨ (A ∧ ¬B)
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ASK&D-BN— Local search
Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

influence graph of the Boolean network ⊆ influence graph of the reaction network

A

B

C
+

+
−

+

+
−

−

Do not select a conjunction that uses a forbidden literal

Examples
invalid conjunction: ¬A ∧ ¬C valid conjunction: ¬C ∧ B

A C
−

−

B

C

+

−
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ASK&D-BN— Local search
Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

(1) input: Boolean transitions
Build partial truth tables for each species X: what were the values of its putative
inputs when its value changed? ; Do not assume the underlying update scheme
Compare the truth table of a candidate function to the reconstructed truth table

010

C

1
011

A, B, C

2
100

A, C

3
001

putative
input output

C A
0

0 3

1

1 2

BC B
11 0 2

AC C
00 1 1

01 0 2

10 1 3
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ASK&D-BN— Local search
Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

(2) input: time series
Xt : continuous value of X at time t
θ: binarisation threshold for X

U : set of unexplained time steps
E =

∑
t∈U |θ − Xt | To minimise (ideally 0)

1

0

θ

X
t
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ASK&D-BN— Local search
Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

Select candidates with the smallest expressions (subset and/or
cardinal minimal)  most general conditions

putative input
AB

observed output
X

00
01 0
10 1
11
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X

possible completions
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ASK&D-BN— Local search
Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

Select candidates with the smallest expressions (subset and/or
cardinal minimal)  most general conditions

putative input
AB

observed output
X

possible completions

00 0 1 0 1
01 0 0 0 0 0
10 1 1 1 1 1
11 0 0 1 1

subset minimal candidates A ∧ ¬B ¬B A A ∨ ¬B
size 2 1 1 2

card. min.
candidates
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ASK&D-BN— Global assembly
Cartesian product of the set of transition functions synthesised for
each species

A B C

f 1
A

f 2
A

f 1
B f 1

C

f 2
C

f 3
C

B1 =

B2 =

B3 =

B4 =

B5 =

B6 =

{
{
{
{
{
{

f 1
A ,

f 1
A ,

f 1
A ,

f 2
A ,

f 2
A ,

f 2
A ,

f 1
B ,

f 1
B ,

f 1
B ,

f 1
B ,

f 1
B ,

f 1
B ,

}f 1
C

f 2
C

f 3
C

f 1
C

f 2
C

f 3
C

}
}
}
}
}
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2. My method and its guarantees (where constraints pop in)
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Evaluation of the approach

1. The BN synthesis itself [Vaginay et al., 2021]
ASK&D-BN versus REVEAL1, Best-Fit2 and Caspo-TS3

2. One specific variant of the complete approach on real-world
reaction networks [Vaginay et al., 2021, Vaginay et al., 2022]
influence graph + time series and midrange binarisation

3. Several variants of the complete approach on Renz
compare concrete and abstract simulation

1[Liang et al., 1998] 2[Lähdesmäki et al., 2003] 3[Ostrowski et al., 2016]
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Evaluation of the BN synthesis step
A. thaliana

5 species, 10 transitions
yeast

4 species, 7 transitions

I REVEAL fails
I Caspo-TS returns more BNs,

some of them with poor coverage
because of reachability constraint

I Best-Fit lacks consistency
I ASK&D-BN returns a small number of

BN, with good coverage and low
variance X

; Confirmed on > 300 datasets generated from existing BNs from the repository of
PyBoolNet
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Conclusion
Automatic synthesis of Boolean networks from a given reaction
network, with guarantees. X

I Methodology: Boolean networks synthesis from constraints
Structure: Influence graph from syntactic parsing of the reactions
I captures all the direct influences among species

Dynamics: Boolean transitions
from numerical simulation of the ODEs + binarisation
I good approximation or the analytical solution
I but we lose causality

from abstract simulation of the ODEs
I correct overapproximation of perfect Euler that captures

causality

I Implementation: the SBML2BNET pipeline (+ ASK&D-BN)

I Evaluation
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From reactions to Boolean influences with guarantees
Why?

Biological system Wet data

Dry data Model
experiment

analysis

experiment

analysis

test

test

Wet lab
in vivo

Dry lab
in silico

reaction network

Boolean network

experimentDry data
1 2

3

Model

synthesis

Hypotheses

1. Use BNs to facilitate some analyses
2. Explore the formal relationship between RN and BN
3. Improve the BN synthesis methods
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Perspectives

1. To facilitate some analyses
Make SBML2BNET easy to use, use more evaluation criteria,
include more knowledge in the synthesis, analyse FO-BNN
themselves (process more RN, compute attractors(*))

2. Explore the formal relationship between RN and BN
Two conjectures to investigate, reverse process(*)

3. Improve the BN synthesis methods
Investigate, in a controled environnement
I when we can’t fullfill the constraints(*)
I overfitting to the sequence of configuration?
I impact of the choice of the binarisation procedure and error

measure
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ASK&D-BN— Local search
Candidate transition function

Search space: 23|S| non-redundant DNF = non-redundant disjunction
of non-redundant conjunctions

Pick a subset of non-redundant conjunctions
% GIVEN : conj(ID, Component, Sign}
% conj(ID, Species, Sign}
conj(1, a, 1). conj(1, b,-1). conj(1, c, 0). % A ∧ ¬B
conj(2, a, -1). conj(2, b, 0). conj(2, c, -1). % ¬A ∧ ¬C
conj(3, a, -1). conj(3, b,-1). conj(3, c, -1). % ¬A ∧ ¬B ∧ ¬C
...

1{conjTakenID(0..maxNbPossibleConj)}. % choice rule

Example
conjTakenID(1). conjTakenID(2). ⇒ candidate = (A ∧ ¬B) ∨ (¬A ∧ ¬C)
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ASK&D-BN— Local search
Structure constraints

influence graph of the Boolean network ⊆ influence graph of the reaction network

A

B

C
+

+
−

+

+
−

−

Do not select a conjunction that uses a forbidden literal
ig(ParentID, x, V) :- conjTaken(ConjID, ParentID, V); V!=0.
:- ig(ParentID, x, V) ; not pig(ParentID, x, V).

Example
invalid conjunction: ¬A ∧ ¬C valid conjunction: ¬C ∧ B

A C
−

−

B

C

+

−
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ASK&D-BN— Local search
Dynamics constraints

(1) input: Boolean transitions
Build partial truth tables for each species X: what were the values of its putative
inputs when its value changed? ; Do not assume the underlying update scheme
Compare the truth table of a candidate function to the reconstructed truth table

putative
input output

C A
0

0 3

1

1 2

BC B
11 0 2

AC C
00 1 1

01 0 2

10 1 3
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ASK&D-BN— Local search
Dynamics constraints

(2) input: time series
#minimize{E@2 : error(E)}. %

Xt : continuous value of X at time t
θ: binarisation threshold for X

U : set of unexplained time steps
E =

∑
t∈U |θ − Xt | To minimise (ideally 0)

1

0

θ

X
t
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ASK&D-BN— Local search
Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal)
 most general conditions

sizeconj(C, S):-conjTakenID(C);S=#sum{|V|,N:conj(C, N, V)} .
sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)} .
#minimize{S@1 : sizeDNF(S)}. % Find mincard expressions
% + generate all combinations to find all the subset min expressions

putative input
AB

observed output
X

00
01 0
10 1
11
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putative input
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observed output
X

possible completions
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subset minimal candidates A ∧ ¬B ¬B A A ∨ ¬B
size 2 1 1 2

card. min.
candidates
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FOBNN fix-points with SAT

Given an FOBNN φ with variables V =
⋃

X∈S{X, X̊, X
next

, X̊
next

}, find
the signed assignments α of φ such that:

∀X ∈ S : α(X) = α( X
next

) (and no others!)

Hans-Jörg Schurr (Univ. of Iowa).
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Functional dependency for detecting dynamics conflicts
Set of attributes V (relation scheme)
A set r of tuples that maps each attributes to a value of its domain (t[X ] ∈ dom(X))

A functional dependency (FD) F is an expression of the form X → Y , where X, Y ⊆ V
F holds in a relation r (r |= f ) if:

∀t1, t2 ∈ r, t1[X ] = t2[X ] =⇒ t1[Y ] = t2[Y ]

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy F ; coverage measure
Simon Vilmin (AMU) and Pierre Faure–Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study
how the complexity of the problems depends on the properties of p (reflexivity, symetry, transitivity, antisymetry)
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how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity,
antisymmetry)
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Learn reaction networks from Boolean transitions
Implication base with variables in S: R = {Ri → Pi}i=1...m
Closed-set: “element of P(S) such that we cannot derive anything new using R”
Closure system = the set C of closed-sets of R
C ordered by ⊆ ; a lattice

R = {
R1 :A + B → C + D
R2 :A + C → D
R3 :B + D → C

}

ABCD

ACD BCD

AD CD CB

A D C B

∅

1111

1011 0111

1001 0011 0110

1000 0001 0010 0100

0000

given a closure system, find the implication base(s)
?
=

given Boolean fixed-points, find the reaction network(s)

Simon Vilmin (AMU), Loïc Paulevé? (LABRI)
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Learn reaction networks from Boolean transitions

input state graph:

derived closure system:
1111

1001 0101

1000 0100 0001

0000

derived implication:
E+ S → P X
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Minimal DNF
Given a set S of inputs for which a function f eval. to 1, each
minimal-by-inclusion set of nodes that covers exactly S forms a
(subset-)minimal DNF of f .
f might have several (subset-)minimal DNFs.
Example: S = {abc, abc, abc, abc, abc} (light green) ; {ab, c} (dark green)
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Not well-formed reaction networks

X k×Y−−−→ _
∂X
∂Y 6= 0 NOT captured by the syntactic influence graph.
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Impact of SBML inconsistencies on structure extraction

Ex. BIOMD n°44: 1 BN generated; coverage=0.55
some kinetics use components not listed in the reactants nor
modifiers → incomplete SIG (missing parents)

A+ B f (A,B,E)−−−−−→ C

A

B

C

E

−

−

+

−

−
+

?

?

?

?

> 60% of SBML models from Biomodels are not “well-formed”4,
but some can be fixed → add a step in the pipeline

4[Fages et al. 2012]
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Results to real-world reaction networks (from BioModels5)
Input: an extended reaction network rules and events
Output: a set of compatible Boolean networks, according to ASK&D-BN

Setting:
I hard structure constraint (extended influence graph)
I soft dynamics constraints (time series and midrange binarisation)
I mincard DNF

Result:
I on 155 reaction networks processed in less than 30 hours
I we synthesise perfect Boolean networks for ∼90% of them X

139/155 sets of BNs have a coverage proportion median = 1

5[Malik-Sheriff et al., 2020]
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Comparison of two settings on Renz
Ron Rcat︷ ︸︸ ︷︷ ︸︸ ︷

E + S
eon
�
eoff

C ecat−−−−→ E + 2 × P︸ ︷︷ ︸
Roff

S

E

C

P

−

−

+

−

−
+

−

+

+

+

I influence graph
I time series
I binarised time series

midrange (0.8) and median (0.6):

fS := ¬E
fE := ¬S
fC := S
fP := C

→ Coverage depends on the
binarisation procedure, BNs miss
some influences

I full graph from abstract
simulation

fS := C ∨ S
fE := E ∨ C
fC := (E ∧ S) ∨ C
fP := C ∨ P

→ Perfect coverage, but does not
comply with the influence graph

=⇒ They do not capture the same thing
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