Constraint-based abstraction of reaction networks to Boolean networks

Athénaïs Vaginay

@Caen, 5th December 2023

Systems Biology

Formal modelling and reasoning about biological systems

A set of species of interest genes, proteins, cells, animals...

How does the system evolve?

Is the population of some cell type stable over time?

How to control the system?

Cure a pathological system
Produce more of some species of
interest

Definition (Model)

Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).

Definition (Model)

Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).

Definition (Model)

Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).

Definition (Model)

Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).

Definition (Model)

Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).

A dichotomic zoo of modelling approaches

Synthesis

- from available knowledge and data about the structure and the dynamics
- parameter fitting task find models that optimise some criteria

Usage

- encodes our knowledge, cannot be exact
- various analyses simulation, control

Synthesis

- from available knowledge and data about the structure and the dynamics
- parameter fitting task find models that optimise some criteria

Usage

- encodes our knowledge, cannot be exact
- various analyses simulation, control

Use the simplest model that contains enough information to answer the question at hand [Bornholdt, 2005].

Synthesis

- from available knowledge and data about the structure and the dynamics
- parameter fitting task find models that optimise some criteria

Usage

- encodes our knowledge, cannot be exact
- various analyses simulation, control

Use the simplest model that contains enough information to answer the question at hand [Bornholdt, 2005]. Boolean networks are simpler than reaction networks.

Synthesis

- from available knowledge and data about the structure and the dynamics
- parameter fitting task find models that optimise some criteria

Usage

- encodes our knowledge, cannot be exact
- various analyses simulation, control

Use the simplest model that contains enough information to answer the question at hand [Bornholdt, 2005]. Boolean networks are simpler than reaction networks.

- Problem statement

Automatic transformation (abstraction) of reaction networks to Boolean networks

1. Use BNs to facilitate some analyses

- 1. Use BNs to facilitate some analyses
- 2. Explore the formal relationship between RN and BN

Introduction _______ 5 / 34

- 1. Use BNs to facilitate some analyses
- 2. Explore the formal relationship between RN and BN
- 3. Improve the BN synthesis methods

Outline

- 1. Preliminaries on reaction networks and Boolean networks
- 2. My method and its guarantees (where constraints pop in)
- 3. Evaluation of the approach
- 4. Conclusion and perspectives

Outline

- 1. Preliminaries on reaction networks and Boolean networks
- 2. My method and its guarantees (where constraints pop in)
- 3. Evaluation of the approach
- 4. Conclusion and perspectives

Preliminaries

 $\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$ reaction, reactants, products, kinetics

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$\mathcal{R}_1:\mathsf{A}+\mathsf{B}\xrightarrow{e_1}2\times\mathsf{C}$$

$$\mathcal{R}_2:\mathsf{A}+\mathsf{C} \xrightarrow{e_2} \mathsf{A}+\mathsf{B}$$

 $\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$ reaction, reactants, products, kinetics

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$\mathcal{R}_1:\mathsf{A}+\mathsf{B}\xrightarrow{e_1}2\times\mathsf{C}$$

$$\mathcal{R}_2:\mathsf{A}+\mathsf{C} \xrightarrow{e_2} \mathsf{A}+\mathsf{B}$$

 $\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$ reaction, reactants, products, kinetics

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$\mathcal{R}_1:\mathsf{A}+\mathsf{B}\xrightarrow{e_1}2\times\mathsf{C}$$

$$\mathcal{R}_2:\mathsf{A}+\mathsf{C} \xrightarrow{e_2} \mathsf{A}+\mathsf{B}$$

 $\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$ reaction, reactants, products, kinetics

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$\mathcal{R}_1:\mathsf{A}+\mathsf{B}\xrightarrow{e_1}2\times\mathsf{C}$$

$$\mathcal{R}_2:\mathsf{A}+\mathsf{C} \xrightarrow{e_2} \mathsf{A}+\mathsf{B}$$

 $\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$ reaction, reactants, products, kinetics

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$\mathcal{R}_1:\mathsf{A}+\mathsf{B}\xrightarrow{e_1}2\times\mathsf{C}$$

$$\mathcal{R}_2:\mathsf{A}+\mathsf{C} \xrightarrow{\mathsf{e}_2} \mathsf{A}+\mathsf{B}$$

 $\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$ reaction, reactants, products, kinetics

Reaction graph $(S \cup \mathcal{R}, E \subseteq (S \times \mathcal{R}) \cup (\mathcal{R} \times S))$

Example

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$\mathcal{R}_1:\mathsf{A}+\mathsf{B}\xrightarrow{e_1}2\times\mathsf{C}$$

$$\mathcal{R}_2:\mathsf{A}+\mathsf{C} \xrightarrow{\mathsf{e}_2} \mathsf{A}+\mathsf{B}$$

$$\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$$
 reaction, reactants, products, kinetics

Reaction graph $(S \cup \mathcal{R}, E \subseteq (S \times \mathcal{R}) \cup (\mathcal{R} \times S))$

Differential semantics ordinary differential equation (ODE) $\left\{\dot{X} = \sum_{i \in 1...m} e_i \times (P_i(X) - R_i(X))\right\}_{X \in \mathcal{S}}$

Example

$$S = \{A, B, C\}$$

$$\mathcal{R}_1:\mathsf{A}+\mathsf{B}\xrightarrow{e_1}2\times\mathsf{C}$$

$$\mathcal{R}_2:\mathsf{A}+\mathsf{C} \xrightarrow{e_2} \mathsf{A}+\mathsf{B}$$

$$\begin{cases} \dot{A} &= -1 \times e_1 \\ \dot{B} &= -1 \times e_1 + 1 \times e_2 \\ \dot{C} &= 2 \times e_1 + (-1) \times e_2 \end{cases}$$

Preliminaries

Boolean network, structure and dynamics

One transition function per species in \mathcal{S} : $\left\{f_{\mathsf{X}}:\mathbb{B}^{|\mathcal{S}|} \to \mathbb{B}\right\}_{\mathsf{X} \in \mathcal{S}} \qquad \mathbb{B} = \{0,1\}$

$$\mathcal{S} = \{\mathsf{A}, \mathsf{B}, \mathsf{C}\}$$

$$f_A := 0$$

$$f_{\mathsf{B}} := \! (\mathsf{B} \wedge \neg \mathsf{C}) \vee (\neg \mathsf{B} \wedge \mathsf{C})$$

$$f_{\mathsf{C}} := \neg \mathsf{C}$$

Boolean network, structure and dynamics

One transition function per species in S:

$$\left\{ \mathit{f}_{X} : \mathbb{B}^{|\mathcal{S}|} \to \mathbb{B} \right\}_{X \in \mathcal{S}} \qquad \qquad \mathbb{B} = \left\{ 0, 1 \right\}$$

Influence graph

$$\textit{IG} = (\mathcal{S}, \textit{E} \subseteq \mathcal{S} \times \mathcal{S}, \sigma : \textit{E} \rightarrow \{+, -, \underset{-}{+}\})$$

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$f_A := 0$$

$$f_{\mathsf{B}} := (\mathsf{B} \wedge \neg \mathsf{C}) \vee (\neg \mathsf{B} \wedge \mathsf{C})$$

$$f_{\mathsf{C}} := \neg \mathsf{C}$$

Boolean network, structure and dynamics

One transition function per species in S:

$$\left\{ f_{X} : \mathbb{B}^{|\mathcal{S}|} \to \mathbb{B} \right\}_{X \in \mathcal{S}}$$
 $\mathbb{B} = \{0, 1\}$

Influence graph

$$\textit{IG} = (\mathcal{S}, E \subseteq \mathcal{S} \times \mathcal{S}, \sigma : E \to \{+, -, \underline{+}\})$$

Transition graph (TG) $(\mathbb{B}^{|\mathcal{S}|}, E \subseteq \mathbb{B}^{|\mathcal{S}|} \times \mathbb{B}^{|\mathcal{S}|})$ general asynchronous update scheme:

$$\mathcal{P}(\mathcal{S})\setminus\emptyset$$

Example

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$f_A := 0$$

$$f_{\mathsf{B}} := (\mathsf{B} \wedge \neg \mathsf{C}) \vee (\neg \mathsf{B} \wedge \mathsf{C})$$

$$f_{\mathsf{C}} := \neg \mathsf{C}$$

Outline

- 1. Preliminaries on reaction networks and Boolean networks
- 2. My method and its guarantees (where constraints pop in)
- 3. Evaluation of the approach
- 4. Conclusion and perspectives

My method and its guarantees

(where constraints pop in)

From RN to BN: which constraints

structure constraints $\begin{array}{c} RN \\ A+B\to 2\times C \\ A+C\to A+B \end{array}$ $\begin{array}{c} BN \\ ? \end{array}$

dynamics constraints

STEP 1: Retrieve constraints from the input RN

dynamics constraints

STEP 1: Retrieve constraints from the input RN

Structure: influence graph

1.1: syntactic parsing of the RN

STEP 1: Retrieve constraints from the input RN

1.1: syntactic parsing of the RN

STEP 1: Retrieve constraints from the input RN

1.1: syntactic parsing of the RN 1.2: ODEs simulation + binarisation

STEP 1: Retrieve constraints from the input RN

1.1: syntactic parsing of the RN

Dynamics: Boolean transitions

1.2: ODEs simulation + binarisation

1.3: abstract simulation of the ODEs

STEP 1: Retrieve constraints from the input RN

Structure: influence graph

1.1: syntactic parsing of the RN

Dynamics: Boolean transitions

1.2: ODEs simulation + binaris

1.2: ODEs simulation + binarisation

1.3: abstract simulation of the ODEs

STEP 2: BN synthesis

STEP 1: Retrieve constraints from the input RN

Structure: influence graph

1.1: syntactic parsing of the RN

Dynamics: Boolean transitions

1.2: ODEs simulation + binarisation

1.3: abstract simulation of the ODEs

STEP 2: BN synthesis

Running example $\mathcal{R}_{\mathsf{enz}}$

Its ODEs (reconstructed)

$$egin{cases} \dot{\mathsf{S}} &= -\mathit{e}_{\mathrm{on}} + \mathit{e}_{\mathrm{off}} \ \dot{\mathsf{E}} &= -\mathit{e}_{\mathrm{on}} + \mathit{e}_{\mathrm{off}} + \mathit{e}_{\mathrm{cat}} \ \dot{\mathsf{C}} &= \mathit{e}_{\mathrm{on}} - \mathit{e}_{\mathrm{off}} + \mathit{e}_{\mathrm{cat}} \ \dot{\mathsf{P}} &= 2 \times \mathit{e}_{\mathrm{cat}} \end{cases}$$

Its parameters (given)

$$e_{
m on} = 10^6 imes extsf{E} imes extsf{S}$$
 $e_{
m off} = 0.2 imes extsf{C}$ $e_{
m cat} = 0.1 imes extsf{C}$

Outline

- 1. Preliminaries on reaction networks and Boolean networks
- 2. My method and its guarantees (where constraints pop in)

STEP 1: Retrieve constraints from the input reaction network

Structure: influence graph

▶ 1.1: syntactic parsing of the reactions

Dynamics: Boolean transitions

▶ 1.2: ODEs simulation + binarisation

▶ 1.3: abstract simulation of the ODEs [Niehren et al., 2022]

STEP 2: BN synthesis with ASK&D-BN [Vaginay et al., 2021]

- 3. Evaluation of the approach
- 4. Conclusion and perspectives

Retrieve an influence graph and

Boolean transitions

Which contraints to build the influence graph $\mathcal{G}_{\mathcal{R}}$?

Constraints inspired from [Fages, Soliman, 2008b]

$$Y \xrightarrow{-} X \in \mathcal{G}_{\mathcal{R}}$$
 if $\exists \mathcal{R} = (R, e, P) : Y \in R$ and $R(X) > P(X)$

$$Y \stackrel{+}{\Rightarrow} X \in \mathcal{G}_{\mathcal{R}}$$
 if $\exists \mathcal{R} = (R, e, P) : Y \in R$ and $R(X) < P(X)$

Guaranty: Overapproximates the possible signs of $\frac{\partial X}{\partial Y}$ \rightarrow capture all the direct influences between the species

Abstract simulation — Intuition

Abstract simulation — Intuition

Abstract simulation — Intuition

Abstract simulation — Intuition

Abstract simulation — Intuition

Abstract simulation — Intuition

Abstract simulation — Intuition

Abstract simulation — Intuition

Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values of the ODE system

X was above 0 and its derivative was negative $plus - plus = unknown \sim$ nondeterminism

Abstract simulation — Intuition

Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values of the ODE system

X was above 0 and its derivative was negative $plus - plus = unknown \sim$ nondeterminism

Abstract simulation — In practice

Contribution

$$\mathcal{V} = \bigcup_{X \in \mathcal{S}} \left\{ X, \mathring{X}, \underset{\mathrm{next}}{X}, \mathring{\underset{\mathrm{next}}{X}} \right\}$$

- ightharpoonup Causal relationships encoded by a first-order logic formula ϕ
- Solve ϕ on $\mathbb{S} = \{-1, 0, 1\}$ $\Rightarrow \text{ relation } \mathbb{B}^{\left| \mathcal{S} \cup \hat{\mathcal{S}} \right|} \times \mathbb{B}^{\left| \substack{\mathcal{S} \cup \mathcal{S} \\ \text{next}} \right| \cdot \text{next}}$
- $lackbox{\sf Restrict}$ the solutions on $\mathcal{S} \cup \underset{\mathrm{nex}}{\mathcal{S}}$

$$ightsquigar$$
 relation $\mathbb{B}^{|\mathcal{S}|} imes \mathbb{B}^{\left| \substack{\mathcal{S} \\ \text{next}} \right|}$

- Keep the causalities of changes
- Proof of correctness: overapproximation of an ideal Euler simulation (perfectly adjusted time step and no computation error)

FOBNN: First-Order Boolean networks with nondeterministic updates

Abstract simulation — Example on $\mathcal{R}_{\mathsf{enz}}$

$$\overset{\circ}{S} = - \quad e_{on} + \quad e_{off} \qquad \qquad \wedge \quad \overset{\circ}{S}_{\substack{next}} = - \quad \underbrace{e_{on} + e_{off}}_{next}$$

$$\wedge \quad \overset{\circ}{E} = - \quad e_{on} + \quad e_{off} + \quad e_{cat} \qquad \wedge \quad \overset{\circ}{E}_{\substack{next}} = - \quad \underbrace{e_{on} + e_{off}}_{next} + \quad \underbrace{e_{cat}}_{next}$$

$$\wedge \quad \overset{\circ}{C} = \quad e_{on} - \quad e_{off} - \quad e_{cat} \qquad \wedge \quad \overset{\circ}{C}_{\substack{next}} = \quad \underbrace{e_{on} - e_{off}}_{next} - \quad \underbrace{e_{cat}}_{next}$$

$$\wedge \quad \overset{\circ}{P} = \qquad \qquad e_{cat} \qquad \wedge \quad \overset{\circ}{P}_{\substack{next}} = \qquad \qquad \underbrace{e_{cat}}_{next}$$

$$\wedge \quad \overset{\circ}{S} = \quad S + \overset{\circ}{S} \quad \wedge \quad S \leq \underset{next}{S}_{next}$$

$$\wedge \quad \overset{\circ}{S} = \quad E + \overset{\circ}{E} \quad \wedge \quad E \leq \underset{next}{E}_{next}$$

$$\wedge \quad \overset{\circ}{C} = \quad C + \overset{\circ}{C} \quad \wedge \quad C \leq \underset{next}{C}_{next}$$

$$\wedge \quad \overset{\circ}{P} = \quad P + \overset{\circ}{P} \quad \wedge \quad P \leq \underset{next}{P}_{next}$$

$$\overset{\circ}{P} = \quad \overset{\circ}{P} = \stackrel{\circ}{P} + \overset{\circ}{P} \quad \wedge \quad P \leq \underset{next}{P}_{next}$$

$$\overset{\circ}{P} = \quad \overset{\circ}{P} = \stackrel{\circ}{P} + \overset{\circ}{P} \quad \wedge \quad P \leq \underset{next}{P} = 0.2 \times \overset{\circ}{C} \quad e_{cat} = 0.1 \times \overset{\circ}{C}_{next}$$

$$\overset{\circ}{P} = \quad \overset{\circ}{P} = \stackrel{\circ}{P} = 0.2 \times \overset{\circ}{P} =$$

Expected transitions [SECP]:
$$1100 \rightarrow **10 \rightarrow ***1$$

Expected transitions [SECP]: $\frac{11}{00} \rightarrow **10 \rightarrow ***1$

Expected transitions [SECP]:
$$1100 \rightarrow **10 \rightarrow ***1$$

Expected transitions [SECP]:
$$1100 \rightarrow **10 \rightarrow ***1$$

Expected transitions [SECP]: 1100 → **10 → ***1

Outline

- 1. Preliminaries on reaction networks and Boolean networks
- 2. My method and its guarantees (where constraints pop in)

STEP 1: Retrieve constraints from the input reaction network

Structure: influence graph

▶ 1.1: syntactic parsing of the reactions

Dynamics: Boolean transitions

▶ 1.2: ODEs simulation + binarisation

▶ 1.3: abstract simulation of the ODEs [Niehren et al., 2022]

STEP 2: BN synthesis with ASK&D-BN [Vaginay et al., 2021]

- 3. Evaluation of the approach
- 4. Conclusion and perspectives

ASK&D-BN

STEP 2: Boolean network synthesis with

1. **Local search** species-wise synthesis of *all* the transition functions compatible with the given influence graph and time series

 $\mbox{Generate candidates} \rightarrow \mbox{Structure constraint} \rightarrow \mbox{Dynamic constraint} \rightarrow \mbox{Minimality constraint}$

1. **Local search** species-wise synthesis of *all* the transition functions compatible with the given influence graph and time series

 $\begin{tabular}{lll} Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint \\ & Answer-Set Programming \\ \end{tabular}$

1. **Local search** species-wise synthesis of *all* the transition functions compatible with the given influence graph and time series

 $\begin{tabular}{lll} Generate \ candidates & \to \ Structure \ constraint & \to \ Dynamic \\ constraint & \to \ Minimality \ constraint \\ & & Answer-Set \ Programming \\ \end{tabular}$

2. Global assembly produce all the possible BNs

ASK&D-BN— Local search

 ${\sf Generate\ candidates} \to {\sf Structure\ constraint} \to {\sf Dynamic\ constraint} \to {\sf Minimality\ constraint}$

Search space: 2^{3^k} non-redundant DNF = non-redundant disjunction of non-redundant conjunctions ideally: the set of minimal DNF with k inputs.

STEP 2: Boolean network synthesis with ASK&D-BN

 $\textbf{Generate candidates} \rightarrow \textbf{Structure constraint} \rightarrow \textbf{Dynamic constraint} \rightarrow \textbf{Minimality constraint}$

Search space: 2^{3^k} non-redundant DNF = non-redundant disjunction of non-redundant conjunctions

ideally: the set of minimal DNF with k inputs.

Pick a subset of non-redundant conjunctions without subsomption and not locally-adjacent

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Search space: 2^{3^k} non-redundant DNF = non-redundant disjunction of non-redundant conjunctions

ideally: the set of minimal DNF with k inputs.

Pick a subset of non-redundant conjunctions without subsomption and not locally-adjacent

Examples

valid candidate.

$$(A) \lor (A \land B)$$

 $(A \land B) \lor (A \land \neg B)$

Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

influence graph of the Boolean network \subseteq influence graph of the reaction network

Do not select a conjunction that uses a forbidden literal

 $\mathsf{Generate} \ \mathsf{candidates} \to \mathsf{Structure} \ \mathsf{constraint} \to \mathsf{Dynamic} \ \mathsf{constraint} \to \mathsf{Minimality} \ \mathsf{constraint}$

 $m{--}$ (1) input: Boolean transitions $m{--}$

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \leadsto Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

putative output input

 $\mathsf{Generate} \ \mathsf{candidates} \to \mathsf{Structure} \ \mathsf{constraint} \to \mathsf{Dynamic} \ \mathsf{constraint} \to \mathsf{Minimality} \ \mathsf{constraint}$

 $oldsymbol{---}$ (1) input: Boolean transitions $oldsymbol{----}$

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

	putative input	output	_
	С	Α	
input influence graph (unsigned) $(A)^{\Delta} \longrightarrow (C)_{\mathbb{R}^2}$			
œB Ď	BC	В	
	AC	С	_

 $\mathsf{Generate} \ \mathsf{candidates} \to \mathsf{Structure} \ \mathsf{constraint} \to \mathsf{Dynamic} \ \mathsf{constraint} \to \mathsf{Minimality} \ \mathsf{constraint}$

— (1) input: Boolean transitions ———

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

						putative input	output
						С	А
010 → 011 ①	2	100	→ ③	001		BC	В
						AC	С

Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

— (1) input: Boolean transitions ——

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? → Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

input	output	
С	Α	
ВС	В	

nutative

 $\mathsf{Generate} \ \mathsf{candidates} \to \mathsf{Structure} \ \mathsf{constraint} \to \mathsf{Dynamic} \ \mathsf{constraint} \to \mathsf{Minimality} \ \mathsf{constraint}$

— (1) input: Boolean transitions ———

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \leadsto Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

	putative input	output	
	С	А	
	1	1	2
$010 \xrightarrow{C} 011 \xrightarrow{A, B, C} 100 \xrightarrow{A, C} 001$	ВС	В	
	AC	С	

 $\mathsf{Generate} \ \mathsf{candidates} \to \mathsf{Structure} \ \mathsf{constraint} \to \mathsf{Dynamic} \ \mathsf{constraint} \to \mathsf{Minimality} \ \mathsf{constraint}$

 $m{--}$ (1) input: Boolean transitions $m{-----}$

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \leadsto Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

	putative input	output	
	C 0	A 0	(3)
	1	1	2
$010 \xrightarrow{C} 011 \xrightarrow{A, B, C} 100 \xrightarrow{A, C} 001$	BC	В	
	AC	С	

 $\mathsf{Generate} \ \mathsf{candidates} \to \mathsf{Structure} \ \mathsf{constraint} \to \mathsf{Dynamic} \ \mathsf{constraint} \to \mathsf{Minimality} \ \mathsf{constraint}$

 $m{--}$ (1) input: Boolean transitions $m{---}$

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \leadsto Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

	putative input	output	:
	С	Α	
	0	0	(3)
	1	1	2
C A, B, C A, C			
$010 \rightarrow 011 \rightarrow 100 \rightarrow 001$	BC	В	
(1)	11	0	2
	AC	С	
	00	1	1
	01	0	2
	10	1	3

 $\mathsf{Generate} \ \mathsf{candidates} \to \mathsf{Structure} \ \mathsf{constraint} \to \mathsf{Dynamic} \ \mathsf{constraint} \to \mathsf{Minimality} \ \mathsf{constraint}$

Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

 X_t : continuous value of X at time t θ : binarisation threshold for X

Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

 X_t : continuous value of X at time t

 θ : binarisation threshold for X

 \mathcal{U} : set of unexplained time steps

 $\mathsf{Generate} \ \mathsf{candidates} \to \mathsf{Structure} \ \mathsf{constraint} \to \mathsf{Dynamic} \ \mathsf{constraint} \to \mathsf{Minimality} \ \mathsf{constraint}$

(2) input: time series

 X_t : continuous value of X at time t

 θ : binarisation threshold for X

 \mathcal{U} : set of unexplained time steps

 $E = \sum_{t \in \mathcal{U}} |\theta - X_t|$ To minimise (ideally 0)

 $\mathsf{Generate} \ \mathsf{candidates} \ \to \ \mathsf{Structure} \ \mathsf{constraint} \ \to \ \mathsf{Dynamic} \ \mathsf{constraint} \ \to \ \mathsf{\underline{Minimality}} \ \mathsf{\underline{constraint}}$

Select candidates with the smallest expressions (subset and/or cardinal minimal) \leadsto most general conditions

putative input	observed output
AB	X
00	
01	0
10	1
11	

Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal) \leadsto most general conditions

putative input AB	observed output X	pos	sible o	comple	etions
00		0	1	0	1
01	0	0	0	0	0
10	1	1	1	1	1
11		0	0	1	1

Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal) \leadsto most general conditions

putative input AB	observed output X	possible completions			
00		0	1	0	1
01	0	0	0	0	0
10	1	1	1	1	1
11		0	0	1	1
subset m	ninimal candidates	$A \wedge \neg B$	¬В	Α	$A \vee \neg B$
	size	2	1	1	2
			/		
card. min.					
			candida	tes	

ASK&D-BN— Global assembly

Cartesian product of the set of transition functions synthesised for each species

$$\mathcal{B}_{1} = \{f_{A}^{1}, f_{B}^{1}, f_{C}^{1}\}$$

$$\mathcal{B}_{2} = \{f_{A}^{1}, f_{B}^{1}, f_{C}^{2}\}$$

$$\mathcal{B}_{3} = \{f_{A}^{1}, f_{B}^{1}, f_{C}^{2}\}$$

$$\mathcal{B}_{4} = \{f_{A}^{2}, f_{B}^{1}, f_{C}^{1}\}$$

$$\mathcal{B}_{5} = \{f_{A}^{2}, f_{B}^{1}, f_{C}^{2}\}$$

$$\mathcal{B}_{6} = \{f_{A}^{2}, f_{B}^{1}, f_{C}^{2}\}$$

Outline

- 1. Preliminaries on reaction networks and Boolean networks
- 2. My method and its guarantees (where constraints pop in)
- 3. Evaluation of the approach
- 4. Conclusion and perspectives

Evaluation of the approach

Evaluation of the approach

- The BN synthesis itself [Vaginay et al., 2021] ASK&D-BN versus REVEAL¹, Best-Fit² and Caspo-TS³
- 2. One specific variant of the complete approach on real-world reaction networks [Vaginay et al., 2021, Vaginay et al., 2022] influence graph + time series and midrange binarisation
- 3. Several variants of the complete approach on \mathcal{R}_{enz} compare concrete and abstract simulation

¹[Liang et al., 1998] ²[Lähdesmäki et al., 2003] ³[Ostrowski et al., 2016]

Evaluation of the approach

A. thaliana5 species, 10 transitions

yeast4 species, 7 transitions

A. thaliana5 species, 10 transitions

yeast4 species, 7 transitions

REVEAL fails

A. thaliana5 species, 10 transitions

REVEAL fails

yeast4 species, 7 transitions

► Best-Fit lacks consistency

A. thaliana5 species, 10 transitions

- REVEAT, fails
- Caspo-TS returns more BNs, some of them with poor coverage because of reachability constraint

yeast
4 species, 7 transitions

Best-Fit lacks consistency

A. thaliana5 species, 10 transitions

- REVEAT, fails
- Caspo-TS returns more BNs, some of them with poor coverage because of reachability constraint

yeast4 species, 7 transitions

- ► Best-Fit lacks consistency
- ► ASK&D-BN returns a small number of BN, with good coverage and low variance ✓

A. thaliana5 species, 10 transitions

- REVEAT, fails
- Caspo-TS returns more BNs, some of them with poor coverage because of reachability constraint
- \sim Confirmed on > 300 datasets generated from existing BNs from the repository of PyBoolNet

yeast4 species, 7 transitions

- ▶ Best-Fit lacks consistency
- ASK&D-BN returns a small number of BN, with good coverage and low variance √

Outline

- 1. Preliminaries on reaction networks and Boolean networks
- 2. My method and its guarantees (where constraints pop in)
- 3. Evaluation of the approach
- 4. Conclusion and perspectives

Conclusion and perspectives

Automatic synthesis of Boolean networks from a given reaction network, with guarantees. \checkmark

Automatic synthesis of Boolean networks from a given reaction network, with guarantees. \checkmark

Methodology: Boolean networks synthesis from constraints
 Structure: Influence graph from syntactic parsing of the reactions

captures all the direct influences among species

Dynamics: Boolean transitions

from numerical simulation of the ODEs + binarisation

- good approximation or the analytical solution
- but we lose causality

from abstract simulation of the ODEs

 correct overapproximation of perfect Euler that captures causality

Automatic synthesis of Boolean networks from a given reaction network, with guarantees. \checkmark

- Methodology: Boolean networks synthesis from constraints
 Structure: Influence graph from syntactic parsing of the reactions
 - captures all the direct influences among species

Dynamics: Boolean transitions

from numerical simulation of the ODEs + binarisation

- good approximation or the analytical solution
- but we lose causality

from abstract simulation of the ODEs

- correct overapproximation of perfect Euler that captures causality
- ► Implementation: the SBML2BNET pipeline (+ ASK&D-BN)

Automatic synthesis of Boolean networks from a given reaction network, with guarantees. \checkmark

- Methodology: Boolean networks synthesis from constraints
 Structure: Influence graph from syntactic parsing of the reactions
 - captures all the direct influences among species

Dynamics: Boolean transitions

from numerical simulation of the ODEs + binarisation

- good approximation or the analytical solution
- but we lose causality

from abstract simulation of the ODEs

- correct overapproximation of perfect Euler that captures causality
- ► Implementation: the SBML2BNET pipeline (+ ASK&D-BN)
- ▶ Evaluation

From reactions to Boolean influences with guarantees

- 1. Use BNs to facilitate some analyses
- 2. Explore the formal relationship between RN and BN
- 3. Improve the BN synthesis methods

Perspectives

1. To facilitate some analyses

Make SBML2BNET easy to use, use more evaluation criteria, include more knowledge in the synthesis, analyse FO-BNN themselves (process more RN, compute attractors(*))

Explore the formal relationship between RN and BN Two conjectures to investigate, reverse process(*)

3. Improve the BN synthesis methods

Investigate, in a controled environnement

- ▶ when we can't fullfill the constraints(*)
- overfitting to the sequence of configuration?
- impact of the choice of the binarisation procedure and error measure

Perspectives

To facilitate some analyses
 Make SBML2BNET easy to use, use more evaluation criteria,
 include more knowledge in the synthesis, analyse FO-BNN

themselves (process more RN, compute attractors(*))

- Explore the formal relationship between RN and BN Two conjectures to investigate, reverse process(*)
- Improve the BN synthesis methods Investigate, in a controlled environnement
 - when we can't fullfill the constraints(*)
 - overfitting to the sequence of configuration?
 - impact of the choice of the binarisation procedure and error measure

Publications

J. Niehren, C. Lhoussaine and AV. Core SBML and its Formal Semantics CMSB: International Conference on Computational Methods in Systems Biology 2023

Abstract simu. J. Niehren, AV, and C. Versari. Abstract Simulation of Reaction Networks via Boolean Networks CMSB: International Conference on Computational Methods in Systems Biology 2022

SBML2BNET AV, T. Boukhobza, and M. Smaïl-Tabbone. From Quantitative SBML Models to Boolean Networks CNA: Complex Networks & Their Applications X 2022

SBML2BNET AV, T. Boukhobza, and M. Smaïl-Tabbone. From Quantitative SBML Models to Boolean Networks Applied Network Science 2022

ASK&D-BN AV, T. Boukhobza, and M. Smaïl-Tabbone. Automatic Synthesis of Boolean Networks from Biological Knowledge and Data OLA: Optimization and Learning 2021

> A. Hirtz, N. Lebourdais, F. Rech, Y. Bailly, AV, M. Smaïl-Tabbone, H. Dubois-Pot-Schneider, and H. Dumond. GPER Agonist G-1 Disrupts Tubulin Dynamics and Potentiates Temozolomide to Impair Glioblastoma Cell Proliferation Cells 2021

Thank you for your attention.

References I

- [Bornholdt, 2005]
 S. Bornholdt
 Less Is More in Modeling Large Genetic Networks,
 2005
- ► [Fages, Soliman, 2008a]
 F. Fages, S. Soliman,
 Abstract Interpretation and Types for Systems Biology,
 Theoretical Computer Science, vol. 403, pp. 52–70, 2008
- ▶ [Fages, Soliman, 2008b]
 F. Fages, S. Soliman,
 From Reaction Models to Influence Graphs and Back: A Theorem,
 Lecture Notes in Computer Science, pp. 90–102 2008
- ► [Hoops et al., 2006] S. Hoops et al. COPASI—a COmplex PAthway Simulator, Bioinformatics, vol. 22, pp. 3067–3074 2006

References II

► [Kohl et al., 2010]

P. Kohl et al.

Systems Biology: An Approach,

Clinical Pharmacology & Therapeutics vol. 88-1 pp. 25–33 2010,

► [Lähdesmäki et al., 2003]

H. Lähdesmäki et al.

On Learning Gene Regulatory Networks under the Boolean Network Model, *Machine Learning*, vol. 52-1 pp. 147–167 2003,

▶ [Liang et al., 1998]

S. Liang et al.

REVEAL, a General Reverse Engineering Algorithm for Inference of Genetic Network Architectures

Pacific Symposium on Biocomputing. pp. 18–29, 1998,

► [Malik-Sheriff et al., 2020]

R. Malik-Sheriff et al.

BioModels—15 Years of Sharing Computational Models in Life Science *Nucleic Acids Research* vol. 48-D1, pp. D407-D415, 2020

References III

- ► [Niehren et al., 2022]
 - J. Niehren et al.

Abstract Simulation of Reaction Networks via Boolean Networks CMSB: International Conference on Computational Methods in Systems Biology 2022,

- [Ostrowski et al., 2016]
 M. Ostrowski et al.
 Boolean Network Identification from Perturbation Time Series Data Combining Dynamics Abstraction and Logic Programming
- *Biosystems* vol. = 149, pp. 139–153, 2016

 ► [Vaginay et al., 2021]
- A. Vaginay, et al.
 - Automatic Synthesis of Boolean Networks from Biological Knowledge and Data
 - Communications in Computer and Information Science pp. 156-170, 2021

References IV

- ► [Vaginay et al., 2021]
 A. Vaginay, et al.
 From Quantitative SBML Models to Boolean Networks
 Complex Networks & Their Applications X 2021
- ► [Vaginay et al., 2022]
 A. Vaginay, et al.
 From Quantitative SBML Models to Boolean Networks
 Applied Network Science vol. 7-1 pp. 1–23, 2022

Our abstraction versus other abstractions Reaction-thinking Reaction network

Boolean network Influence thinking

Our abstraction versus other abstractions Reaction-thinking Reaction network

differential Boolean network Influence thinking

Our abstraction versus other abstractions Reaction-thinking Reaction network differential Approximatio Boolean network

Influence thinking

Our abstraction versus other abstractions

Reaction-thinking Reaction network differential Approximatio Boolean network Influence thinking

Our abstraction versus other abstractions

Our abstraction versus other abstractions

Reaction-thinking Reaction network

[Fages, Soliman, 2008a]

Our abstraction versus other abstractions Reaction-thinking Reaction network

[Fages, Soliman, 2008a]

Our abstraction versus other abstractions Reaction-thinking Reaction network

Candidate transition function

Search space: $2^{3^{|\mathcal{S}|}}$ non-redundant DNF = non-redundant disjunction of non-redundant conjunctions

Candidate transition function

Search space: $2^{3^{|S|}}$ non-redundant DNF = non-redundant disjunction of non-redundant conjunctions

Pick a subset of non-redundant conjunctions –

```
% GIVEN: conj(ID, Component, Sign}
% conj(ID, Species, Sign}
conj(1, a, 1). conj(1, b,-1). conj(1, c, 0). % A ∧ ¬B
conj(2, a, -1). conj(2, b, 0). conj(2, c, -1). % ¬A ∧ ¬C
conj(3, a, -1). conj(3, b,-1). conj(3, c, -1). % ¬A ∧ ¬B ∧ ¬C
...
1{conjTakenID(0..maxNbPossibleConj)}. % choice rule
```

Candidate transition function

Search space: $2^{3^{|S|}}$ non-redundant DNF = non-redundant disjunction of non-redundant conjunctions

```
    Pick a subset of non-redundant conjunctions —
```

```
% GIVEN : conj(ID, Component, Sign}
% conj(ID, Species, Sign}
conj(1, a, 1). conj(1, b,-1). conj(1, c, 0). % A ∧ ¬B
conj(2, a, -1). conj(2, b, 0). conj(2, c, -1). % ¬A ∧ ¬C
conj(3, a, -1). conj(3, b,-1). conj(3, c, -1). % ¬A ∧ ¬B ∧ ¬C
...
1{conjTakenID(0..maxNbPossibleConj)}. % choice rule
```

Example ————

 $\texttt{conjTakenID(1). conjTakenID(2).} \Rightarrow \texttt{candidate} = (A \land \neg B) \lor (\neg A \land \neg C)$

Structure constraints

influence graph of the Boolean network \subseteq influence graph of the reaction network

Do not select a conjunction that uses a forbidden literal

ig(ParentID, x, V) :- conjTaken(ConjID, ParentID, V); V!=0.
:- ig(ParentID, x, V); not pig(ParentID, x, V).

Example -

invalid conjunction: $\neg A \land \neg C$

valid conjunction: $\neg C \land B$

Dynamics constraints

— (1) input: Boolean transitions

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \leadsto Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

putative output input

Dynamics constraints

— (1) input: Boolean transitions

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

putative input	output
С	Α

input influence graph (unsigned)

BC	В	
	_	
AC	С	

Dynamics constraints

— (1) input: Boolean transitions

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

		putative input	output
		С	Α
$010 \xrightarrow{\bigcirc} 011 \xrightarrow{\bigcirc} 100 \xrightarrow{\bigcirc} 001$			
	·	ВС	В
		AC	C

Dynamics constraints

— (1) input: Boolean transitions

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

putative input	output	
С	Α	
ВС	В	

AC

C

Dynamics constraints

— (1) input: Boolean transitions

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

	putative input output	
	C A	
$010 \xrightarrow{C} 011 \xrightarrow{A,B,C} 100 \xrightarrow{A,C} 001$	1 1 (2
	BC B	
		_

Dynamics constraints

— (1) input: Boolean transitions

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \leadsto Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

$010 \xrightarrow{C} 011$	A,B,C, 104	A,C, 001
$010 \longrightarrow 011$	\longrightarrow 100	$1 \longrightarrow 001$
(1)	(2)	(3)

putative input	output	
С	Α	
0	0	(3)
1	1	2
BC	В	
AC	C	

Dynamics constraints

 $oldsymbol{--}$ (1) input: Boolean transitions \cdot

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \leadsto Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

$$010 \xrightarrow{C} 011 \xrightarrow{A,B,C} 100 \xrightarrow{A,C} 001$$

putative input	output	
С	Α	
0	0	(3)
1	1	2
BC	В	
11	0	2
AC	C	
00	1	(1)
01	0	(2)
10	1	3

Dynamics constraints

(2) input: time series

#minimize{E02 : error(E)}. %

 X_t : continuous value of X at time t

 θ : binarisation threshold for X

Dynamics constraints

(2) input: time series

#minimize{E02 : error(E)}. %

 X_t : continuous value of X at time t

 θ : binarisation threshold for X

Dynamics constraints

(2) input: time series

#minimize{E@2 : error(E)}. %

 X_t : continuous value of X at time t θ : binarisation threshold for X

 \mathcal{U} : set of unexplained time steps

Dynamics constraints

(2) input: time series

#minimize{E@2 : error(E)}. %

 X_t : continuous value of X at time t

 θ : binarisation threshold for X

 $\mathcal{U}\colon$ set of unexplained time steps

 $E = \sum_{t \in \mathcal{U}} |\theta - X_t|$ To minimise (ideally 0)

Minimality constraint

```
Select candidates with the smallest expressions (subset and/or cardinal minimal)
```

 \leadsto most general conditions

```
sizeconj(C, S):-conjTakenID(C);S=#sum{|V|,N:conj(C, N, V)} .
sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)} .
#minimize{S@1 : sizeDNF(S)}. % Find mincard expressions
% + generate all combinations to find all the subset min expressions
```

putative input	observed output
AB	X
00	
01	0
10	1
11	

Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal)

 $\rightsquigarrow \mathsf{most} \mathsf{\ general} \mathsf{\ conditions}$

```
sizeconj(C, S):-conjTakenID(C);S=#sum{|V|,N:conj(C, N, V)} .
sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)} .
#minimize{S@1 : sizeDNF(S)}. % Find mincard expressions
% + generate all combinations to find all the subset min expressions
```

putative input	observed output	pos	sible o	omple	etions
AB	X				
00		0	1	0	1
01	0	0	0	0	0
10	1	1	1	1	1
11		0	0	1	1

Minimality constraint

```
Select candidates with the smallest expressions (subset and/or cardinal minimal)

most general conditions

sizeconj(C, S):-conjTakenID(C);S=#sum{|V|,N:conj(C, N, V)}.

sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)}.

#minimize{S@1: sizeDNF(S)}. % Find mincard expressions

% + generate all combinations to find all the subset min expressions
```

putative input AB	observed output	possible completions			
00		0	1	0	1
01	0	0	0	0	0
10	1	1	1	1	1
11		0	0	1	1
subset m	ninimal candidates	$A \wedge \neg B$	¬В	Α	$A \lor \neg B$
	size	2	1	1	2
card. min. candidates					

FOBNN fix-points with SAT

Given an FOBNN ϕ with variables $\mathcal{V} = \bigcup_{X \in \mathcal{S}} \{X, \mathring{X}, \underset{next}{\mathring{X}}, \underset{next}{\mathring{X}} \}$, find the signed assignments α of ϕ such that:

$$\forall X \in \mathcal{S} : \alpha(X) = \alpha(\underset{next}{X}) \text{ (and no others!)}$$

Hans-Jörg Schurr (Univ. of Iowa).

Functional dependency for detecting dynamics conflicts

Set of attributes V (relation scheme)

A set r of tuples that maps each attributes to a value of its domain $(t[X] \in dom(X))$

A functional dependency (FD) F is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V}$ F holds in a relation r $(r \models f)$ if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $F \sim$ coverage measure

Simon Vilmin (AMU) and Pierre Faure–Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symetry, transitivity, antisymetry)

Functional dependency for detecting dynamics conflicts

Set of attributes \mathcal{V} (relation scheme)

A set r of tuples that maps each attributes to a value of its domain $(t[X] \in dom(X))$

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V}$ f holds in a relation r $(r \models f)$ if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Simon Vilmin (AMU) and Pierre Faure–Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}_{\text{next}}$ (relation scheme)

A set r of tuples that maps each attributes to a value of its domain $(t[X] \in dom(X))$

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V}$ f holds in a relation r ($r \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Simon Vilmin (AMU) and Pierre Faure–Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Set of variables $\mathcal{V} = \mathcal{S} \cup \underset{\text{next}}{\mathcal{S}}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V}$ f holds in a relation r ($r \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \rightarrow$ coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	C	A	$_{\rm next}^{\rm B}$	$_{ m next}^{\sf C}$	$X \subseteq \mathcal{S}$
t_1	0	0	0	0	0	0	•
t ₂	0	1	1	1	0	0	
t_3	0	0	0	0	0	1	•

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V}$ f holds in a relation r $(r \models f)$ if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \underset{\text{next}}{\mathcal{S}}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	Α	В	С	A	$_{\rm next}^{\sf B}$	$_{ m next}^{\sf C}$	$X \subseteq \mathcal{S}$
t_1	0	0	0	0	0	0	•
t_2	0	1	1	1	0	0	
t ₂ t ₃	0	0	0	0 1 0	0	1	•

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation r ($r \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \underset{\text{next}}{\mathcal{S}}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	Α	В	С	A	$_{\rm next}^{\sf B}$	$_{ m next}^{\sf C}$	$X \subseteq \mathcal{S}$
t_1	0	0	0	0	0	0	•
t_2	0	1	1	1	0	0	
t ₂ t ₃	0	0	0	0 1 0	0	1	•

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation r ($r \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	Α	В	С	A	$_{\rm next}^{\sf B}$	$_{ m next}^{\sf C}$	$X\subseteq\mathcal{S}$
t_1	0	0	0	0	0	0	•
t_2	0	1	1	1	0	0	
t_3	0	0	0	0	0	1	•

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation f f if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	C	A	$_{ m next}^{ m B}$	$_{ m next}^{\sf C}$	$X \subseteq \mathcal{S}$
t_1	0	0	0	0	0	0	•
t_2	0	1	1 0	1	0	0	
t_3	0	0	0	0	0	1	•

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation r ($r \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}_{\text{next}}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	Α	В	С	A	$_{\rm next}^{\sf B}$	$_{ m next}^{\sf C}$	$X \subseteq \mathcal{S}$
t_1	0	0	0	0	0	0	•
t_2	0	1	1	1	0	0	
t_3	0	0	0	0	0	1	•

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation f ($f \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}_{\text{next}}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	C	A	$_{\rm next}^{\sf B}$	$_{ m next}^{\sf C}$	$X \subseteq \mathcal{S}$
t_1	0	0	0	0	0	0	•
t ₂	0	1	1	1	0	0	
t_3	0	0	0	0	0	1	•

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation r ($r \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	Α	В	С	A	$_{\rm next}^{\sf B}$	$_{ m next}^{\sf C}$	$X \subseteq \mathcal{S}$
t_1	0	0	0	0	0	0	•
t_2	0	1	1	1	0	0	
t ₂ t ₃	0	0	0	0 1 0	0	1	•

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation f ($f \models f$) if:

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Learn reaction networks from Boolean transitions

Implication base with variables in \mathcal{S} : $\mathcal{R} = \{R_i \to P_i\}_{i=1...m}$ Closed-set: "element of $\mathcal{P}(\mathcal{S})$ such that we cannot derive anything new using \mathcal{R} " Closure system = the set \mathcal{C} of closed-sets of \mathcal{R} \mathcal{C} ordered by $C \to A$ a lattice

$$\mathcal{R} = \{$$

$$\mathcal{R}_1 : A + B \rightarrow C + D$$

$$\mathcal{R}_2 : A + C \rightarrow D$$

$$\mathcal{R}_3 : B + D \rightarrow C$$

$$\}$$

Simon Vilmin (AMU), Loïc Paulevé? (LABRI)

Learn reaction networks from Boolean transitions

Reaction network with species in $S: \mathcal{R} = \{R_i \rightarrow P_i\}_{i=1...m}$

Closed-set: "element of $\mathcal{P}(\mathcal{S})$ such that we cannot derive anything new using \mathcal{R} "

Closure system = the set C of closed-sets of R

 ${\mathcal C}$ ordered by $\subseteq\, \leadsto$ a lattice

$$\mathcal{R} = \{$$

$$\mathcal{R}_1 : A + B \rightarrow C + D$$

$$\mathcal{R}_2 : A + C \rightarrow D$$

$$\mathcal{R}_3 : B + D \rightarrow C$$

given a closure system, find the implication base(s) $% \left(s\right) =\left(s\right) \left(s\right)$

given Boolean fixed-points, find the reaction network(s)

Simon Vilmin (AMU), Loïc Paulevé? (LABRI)

Learn reaction networks from Boolean transitions

Minimal DNF

Given a set S of inputs for which a function f eval. to 1, each minimal-by-inclusion set of nodes that covers exactly S forms a (subset-)minimal DNF of f.

f might have several (subset-)minimal DNFs.

Example: $S = \{abc, \overline{abc}, \overline{abc}, \overline{abc}, \overline{abc}\}$ (light green) $\sim \{\overline{ab}, c\}$ (dark green)

Not well-formed reaction networks

$$X \xrightarrow{k \times Y}$$

 $\frac{\partial X}{\partial Y} \neq 0$ NOT captured by the syntactic influence graph.

Impact of SBML inconsistencies on structure extraction

Ex. BIOMD n°44: 1 BN generated; coverage=0.55 some kinetics use components not listed in the reactants nor modifiers \rightarrow incomplete SIG (missing parents)

$$A + B \xrightarrow{f(A,B,E)} C$$

⁴[Fages et al. 2012]

Impact of SBML inconsistencies on structure extraction

Ex. BIOMD n°44: 1 BN generated; coverage=0.55 some kinetics use components not listed in the reactants nor modifiers \rightarrow incomplete SIG (missing parents)

$$A + B \xrightarrow{f(A,B,E)} C$$

> 60% of SBML models from Biomodels are not "well-formed"⁴, but some can be fixed \rightarrow add a step in the pipeline

⁴[Fages et al. 2012]

Results to real-world reaction networks (from BioModels⁵)

Input: an extended reaction network rules and events
Output: a set of compatible Boolean networks, according to ASK&D-BN

Setting:

- hard structure constraint (extended influence graph)
- soft dynamics constraints (time series and midrange binarisation)
- mincard DNF

Result:

- on 155 reaction networks processed in less than 30 hours
- ▶ we synthesise perfect Boolean networks for \sim 90% of them \checkmark 139/155 sets of BNs have a coverage proportion median = 1

⁵[Malik-Sheriff et al., 2020]

Comparison of two settings on $\mathcal{R}_{\mathsf{enz}}$

$$\underbrace{ \underbrace{ \begin{array}{c} \mathcal{R}_{\mathrm{on}} \\ E + S \stackrel{e_{\mathrm{on}}}{\rightleftarrows} C \\ \stackrel{e_{\mathrm{cat}}}{\longrightarrow} \end{array}}_{\mathcal{R}_{\mathrm{off}}} \mathsf{E} + 2 \times \mathsf{P}$$

- influence graph
- time series
- binarised time series

midrange (0.8) and median (0.6):

$$f_{S} := \neg E$$

 $f_{E} := \neg S$
 $f_{C} := S$
 $f_{P} := C$

ightarrow Coverage depends on the binarisation procedure, BNs miss some influences

full graph from abstract simulation

$$f_{S} := C \lor S$$

$$f_{E} := E \lor C$$

$$f_{C} := (E \land S) \lor C$$

$$f_{P} := C \lor P$$

→ Perfect coverage, but does not comply with the influence graph