Constraint-based abstraction of reaction networks to Boolean networks

Athénaïs Vaginay

@Caen, 5th December 2023

Systems Biology

Formal modelling and reasoning about biological systems
A set of species of interest genes, proteins, cells, animals...

Questions

How does the system evolve?
Is the population of some cell type stable over time?

How to control the system?
Cure a pathological system Produce more of some species of interest

The workflow of system biology [Kohl et al., 2010]

The workflow of system biology [Kohl et al., 2010]

The workflow of system biology [Kohl et al., 2010]

The workflow of system biology [Kohl et al., 2010]

Definition (Model)
Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).

The workflow of system biology [Kohl et al., 2010]

Definition (Model)
Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).

The workflow of system biology [Kohl et al., 2010]

Definition (Model)
Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).

The workflow of system biology [Kohl et al., 2010]

Definition (Model)
Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).

The workflow of system biology [Kohl et al., 2010]

Definition (Model)
Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).

A dichotomic zoo of modelling approaches

Hybrid system

Bayesian network

Constraint based model

Agent-based model

Reaction network
Boolean network

Cellular automata

Principles shared across modelling approaches

Synthesis	encodes our knowledge, from available knowledge and data about the structure and the dynamics
parameter fitting task exact	
parious analyses find models that optimise some criteria	vimulation, control

Principles shared across modelling approaches

	Synthesis
from available knowledge and data about the structure and the dynamics	encodes our knowledge, cannot be exact
parameter fitting task pind models that optimise some criteria	simulation, control

Use the simplest model that contains enough information to answer the question at hand [Bornholdt, 2005].

Principles shared across modelling approaches

	Synthesis
from available knowledge and data about the structure and the dynamics	encodes our knowledge, cannot be exact
parameter fitting task pind models that optimise some criteria	simulation, control

Use the simplest model that contains enough information to answer the question at hand [Bornholdt, 2005].
Boolean networks are simpler than reaction networks.

Principles shared across modelling approaches

Use the simplest model that contains enough information to answer the question at hand [Bornholdt, 2005]. Boolean networks are simpler than reaction networks.

Problem statement

Automatic transformation (abstraction) of reaction networks to Boolean networks

From reactions to Boolean influences with guarantees

Why?

From reactions to Boolean influences with guarantees

Why?

From reactions to Boolean influences with guarantees

Why?

1. Use BNs to facilitate some analyses

From reactions to Boolean influences with guarantees

Why?

1. Use BNs to facilitate some analyses
2. Explore the formal relationship between RN and BN

From reactions to Boolean influences with guarantees

 Why?

1. Use BNs to facilitate some analyses
2. Explore the formal relationship between RN and BN
3. Improve the BN synthesis methods

Outline

1. Preliminaries on reaction networks and Boolean networks
2. My method and its guarantees (where constraints pop in)
3. Evaluation of the approach
4. Conclusion and perspectives

Outline

1. Preliminaries on reaction networks and Boolean networks
2. My method and its guarantees (where constraints pop in)
3. Evaluation of the approach
4. Conclusion and perspectives

Preliminaries

Reaction networks, structure and dynamics

$\mathcal{R}=\left\{\mathcal{R}_{i}: R_{i} \xrightarrow{e_{i}} P_{i}\right\}_{i=1 \ldots m}$
reaction, reactants, products, kinetics

Example

$$
\begin{gathered}
\mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
\mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \xrightarrow{e_{1}} 2 \times \mathrm{C} \\
\mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \xrightarrow{e_{2}} \mathrm{~A}+\mathrm{B}
\end{gathered}
$$

Reaction networks, structure and dynamics

$$
\mathcal{R}=\left\{\mathcal{R}_{i}: R_{i} \xrightarrow{e_{i}} P_{i}\right\}_{i=1 \ldots m}
$$

reaction, reactants, products, kinetics

Example

$$
\begin{gathered}
\mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
\mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \xrightarrow{e_{1}} 2 \times \mathrm{C} \\
\mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \xrightarrow{e_{2}} \mathrm{~A}+\mathrm{B}
\end{gathered}
$$

Reaction networks, structure and dynamics

$\mathcal{R}=\left\{\mathcal{R}_{i}: R_{i} \xrightarrow{e_{i}} P_{i}\right\}_{i=1 \ldots m}$ reaction, reactants, products, kinetics

Example
$\mathcal{S}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
$\mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \xrightarrow{e_{1}} 2 \times \mathrm{C}$
$\mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \xrightarrow{e_{2}} \mathrm{~A}+\mathrm{B}$

Reaction networks, structure and dynamics

$\mathcal{R}=\left\{\mathcal{R}_{i}: R_{i} \xrightarrow{e_{i}} P_{i}\right\}_{i=1 \ldots m}$
reaction, reactants, products, kinetics

Example

$$
\begin{gathered}
\mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
\mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \xrightarrow{e_{1}} 2 \times \mathrm{C} \\
\mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \xrightarrow{e_{2}} \mathrm{~A}+\mathrm{B}
\end{gathered}
$$

Reaction networks, structure and dynamics

$\mathcal{R}=\left\{\mathcal{R}_{i}: R_{i} \xrightarrow{e_{i}} P_{i}\right\}_{i=1 \ldots m}$
reaction, reactants, products, kinetics

Example

$$
\begin{gathered}
\mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
\mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \xrightarrow{e_{1}} 2 \times \mathrm{C} \\
\mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \xrightarrow{e_{2}} \mathrm{~A}+\mathrm{B}
\end{gathered}
$$

Reaction networks, structure and dynamics

$\mathcal{R}=\left\{\mathcal{R}_{i}: R_{i} \xrightarrow{e_{i}} P_{i}\right\}_{i=1 \ldots m}$
reaction, reactants, products, kinetics

Reaction graph
$(\mathcal{S} \cup \mathcal{R}, E \subseteq(\mathcal{S} \times \mathcal{R}) \cup(\mathcal{R} \times \mathcal{S}))$

Example

$$
\begin{gathered}
\mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
\mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \xrightarrow{e_{1}} 2 \times \mathrm{C} \\
\mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \xrightarrow{e_{2}} \mathrm{~A}+\mathrm{B}
\end{gathered}
$$

Reaction networks, structure and dynamics

$\mathcal{R}=\left\{\mathcal{R}_{i}: R_{i} \xrightarrow{e_{i}} P_{i}\right\}_{i=1 \ldots m}$
reaction, reactants, products, kinetics

Reaction graph
$(\mathcal{S} \cup \mathcal{R}, E \subseteq(\mathcal{S} \times \mathcal{R}) \cup(\mathcal{R} \times \mathcal{S}))$

Differential semantics
ordinary differential equation (ODE)
$\left\{\dot{\mathrm{X}}=\sum_{i \in 1 \ldots m} e_{i} \times\left(P_{i}(\mathrm{X})-R_{i}(\mathrm{X})\right)\right\}_{\mathrm{X} \in \mathcal{S}}$

Example

$$
\begin{gathered}
\mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
\mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \xrightarrow{e_{1}} 2 \times \mathrm{C} \\
\mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \xrightarrow{e_{2}} \mathrm{~A}+\mathrm{B}
\end{gathered}
$$

$$
\left\{\begin{array}{l}
\dot{\mathrm{A}}=-1 \times e_{1} \\
\dot{\mathrm{~B}}=-1 \times e_{1}+1 \times e_{2} \\
\dot{\mathrm{C}}=2 \times e_{1}+(-1) \times e_{2}
\end{array}\right.
$$

Boolean network, structure and dynamics

——Example

$$
\begin{aligned}
& \mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
& f_{\mathrm{A}}:=0 \\
& f_{\mathrm{B}}:=(\mathrm{B} \wedge \neg \mathrm{C}) \vee(\neg \mathrm{B} \wedge \mathrm{C}) \\
& f_{\mathrm{C}}:=\neg \mathrm{C}
\end{aligned}
$$

Boolean network, structure and dynamics

_ Example

$$
\begin{aligned}
& \mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
& f_{\mathrm{A}}:=0 \\
& f_{\mathrm{B}}:=(\mathrm{B} \wedge \neg \mathrm{C}) \vee(\neg \mathrm{B} \wedge \mathrm{C}) \\
& f_{\mathrm{C}}:=\neg \mathrm{C}
\end{aligned}
$$

(A) $C^{-D^{-}}$
$\pm \triangle(B)^{-}$
Cb

Influence graph

$$
I G=(\mathcal{S}, E \subseteq \mathcal{S} \times \mathcal{S}, \sigma: E \rightarrow\{+,-,+\})
$$

One transition function per species in \mathcal{S} :

$$
\left\{f_{\mathrm{X}}: \mathbb{B}^{|\mathcal{S}|} \rightarrow \mathbb{B}\right\}_{\mathrm{X} \in \mathcal{S}} \quad \mathbb{B}=\{0,1\}
$$

Boolean network, structure and dynamics

One transition function per species in \mathcal{S} : $\left\{f_{x}: \mathbb{B}^{|\mathcal{S}|} \rightarrow \mathbb{B}\right\}_{x \in \mathcal{S}} \quad \mathbb{B}=\{0,1\}$

$$
\begin{aligned}
& \mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
& f_{\mathrm{A}}:=0 \\
& f_{\mathrm{B}}:=(\mathrm{B} \wedge \neg \mathrm{C}) \vee(\neg \mathrm{B} \wedge \mathrm{C}) \\
& f_{\mathrm{C}}:=\neg \mathrm{C}
\end{aligned}
$$

Influence graph
$I G=\left(\mathcal{S}, E \subseteq \mathcal{S} \times \mathcal{S}, \sigma: E \rightarrow\left\{+,-,{ }_{-}^{+}\right\}\right)$

Transition graph (TG)
$\left(\mathbb{B}^{|\mathcal{S}|}, E \subseteq \mathbb{B}^{|\mathcal{S}|} \times \mathbb{B}^{\mid \mathcal{S |}}\right)$
general asynchronous update scheme:
$\mathcal{P}(\mathcal{S}) \backslash \emptyset$

Outline

1. Preliminaries on reaction networks and Boolean networks
2. My method and its guarantees (where constraints pop in)
3. Evaluation of the approach
4. Conclusion and perspectives

My method and its guarantees

(where constraints pop in)

From RN to BN: which constraints

$$
\begin{gathered}
R N \\
A+B \rightarrow 2 \times C \\
A+C \rightarrow A+B
\end{gathered}
$$

From RN to BN: which constraints

structure constraints
$R N$
$A+B \rightarrow 2 \times C$
$A+C \rightarrow A+B$

STEP 1: Retrieve constraints from the input RN

From RN to BN: which constraints

structure constraints

dynamics constraints

STEP 1: Retrieve constraints from the input RN Structure: influence graph
1.1: syntactic parsing of the RN

From RN to BN: which constraints

structure constraints

dynamics constraints

STEP 1: Retrieve constraints from the input RN Structure: influence graph

Dynamics: Boolean transitions
1.1: syntactic parsing of the RN

From RN to BN: which constraints

structure constraints

dynamics constraints

RN

From RN to BN: which constraints

structure constraints

dynamics constraints

STEP 1: Retrieve constraints from the input RN

Structure: influence graph
1.1: syntactic parsing of the RN

Dynamics: Boolean transitions
1.2: ODEs simulation + binarisation
1.3: abstract simulation of the ODEs

From RN to BN: which constraints

structure constraints

dynamics constraints

STEP 1: Retrieve constraints from the input RN

Structure: influence graph
1.1: syntactic parsing of the RN

STEP 2: BN synthesis

Dynamics: Boolean transitions
1.2: ODEs simulation + binarisation 1.3: abstract simulation of the ODEs

From RN to BN: which constraints

structure constraints

dynamics constraints

STEP 1: Retrieve constraints from the input RN

Structure: influence graph
1.1: syntactic parsing of the RN

STEP 2: BN synthesis

Dynamics: Boolean transitions
1.2: ODEs simulation + binarisation 1.3: abstract simulation of the ODEs

Running example $\boldsymbol{\mathcal { R }}_{\text {enz }}$

Its ODEs (reconstructed)

$$
\left\{\begin{array}{l}
\dot{\mathrm{S}}=-e_{\mathrm{on}}+e_{\mathrm{off}} \\
\dot{\mathrm{E}}=-e_{\mathrm{on}}+e_{\mathrm{off}}+e_{\mathrm{cat}} \\
\dot{\mathrm{C}}=e_{\mathrm{on}}-e_{\mathrm{off}}+e_{\mathrm{cat}} \\
\dot{\mathrm{P}}=2 \times e_{\mathrm{cat}}
\end{array}\right.
$$

Its parameters (given)

$$
\begin{array}{r}
e_{\text {on }}=10^{6} \times \mathrm{E} \times \mathrm{S} \\
e_{\text {off }}=0.2 \times \mathrm{C} \\
e_{\text {cat }}=0.1 \times \mathrm{C}
\end{array}
$$

Outline

1. Preliminaries on reaction networks and Boolean networks
2. My method and its guarantees (where constraints pop in)

STEP 1: Retrieve constraints from the input reaction network Structure: influence graph

- 1.1: syntactic parsing of the reactions

Dynamics: Boolean transitions

- 1.2: ODEs simulation + binarisation
- 1.3: abstract simulation of the ODEs [Niehren et al., 2022]

STEP 2: BN synthesis with ASK\&D-BN [Vaginay et al., 2021]
3. Evaluation of the approach
4. Conclusion and perspectives

STEP 1: Boolean transitions

Which contraints to build the influence graph $\mathcal{G}_{\mathcal{R}}$?

Constraints inspired from [Fages, Soliman, 2008b]
$\mathrm{Y} \xrightarrow{\Rightarrow} \mathrm{X} \in \mathcal{G}_{\mathcal{R}}$ if $\exists \mathcal{R}=(R, e, P): \mathrm{Y} \in R$ and $R(\mathrm{X})>P(\mathrm{X})$
$\mathrm{Y} \xrightarrow{+} \mathrm{X} \in \mathcal{G}_{\mathcal{R}}$ if $\exists \mathcal{R}=(R, e, P): \mathrm{Y} \in R$ and $R(\mathrm{X})<P(\mathrm{X})$

Guaranty: Overapproximates the possible signs of $\frac{\partial X}{\partial Y}$ \rightarrow capture all the direct influences between the species

Which constraints to retrieve Boolean transitions from \mathcal{R} ?

Abstract simulation - Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022]
Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values of the ODE system

Which constraints to retrieve Boolean transitions from \mathcal{R} ?

Abstract simulation - Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values of the ODE system

Which constraints to retrieve Boolean transitions from \mathcal{R} ?
Abstract simulation - Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022]
Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values of the ODE system

Which constraints to retrieve Boolean transitions from \mathcal{R} ?
Abstract simulation - Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022]
Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values of the ODE system

Which constraints to retrieve Boolean transitions from \mathcal{R} ?
Abstract simulation - Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022]
Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values of the ODE system

Which constraints to retrieve Boolean transitions from \mathcal{R} ?
Abstract simulation - Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022]
Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values of the ODE system

Which constraints to retrieve Boolean transitions from \mathcal{R} ?
Abstract simulation - Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022]
Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values of the ODE system

Which constraints to retrieve Boolean transitions from \mathcal{R} ?
Abstract simulation - Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022]
Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values of the ODE system

X was above 0 and its derivative was negative

$$
\text { plus }- \text { plus }=\text { unknown } \leadsto \text { nondeterminism }
$$

Which constraints to retrieve Boolean transitions from \mathcal{R} ?
Abstract simulation - Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022]
Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values of the ODE system

X was above 0 and its derivative was negative plus - plus $=$ unknown \sim nondeterminism

Which constraints to retrieve Boolean transitions from \mathcal{R} ? Abstract simulation - In practice

Contribution Guarantee

$$
\mathcal{V}=\bigcup_{X \in \mathcal{S}}\{x, \dot{x}, \underset{\text { next }}{X}, \underset{\text { next }}{\dot{\sim}}\}
$$

- Causal relationships encoded by a first-order logic formula ϕ
- Solve ϕ on $\mathbb{S}=\{-1,0,1\}$
\rightsquigarrow relation $\mathbb{B}^{\mid \mathcal{S} \cup \mathcal{S}}\left|\times \mathbb{B}^{\mid \mathcal{S}_{\text {next }} \cup \cup_{\text {next }}}\right|$
- Restrict the solutions on $\mathcal{S} \cup \mathcal{S}$ next
- Keep the causalities of changes
- Proof of correctness: overapproximation of an ideal Euler simulation (perfectly adjusted time step and no computation error)

Which constraints to retrieve Boolean transitions from \mathcal{R} ?
Abstract simulation - Example on $\boldsymbol{\mathcal { R }}_{\text {enz }}$

$$
\begin{aligned}
& \grave{S}=-e_{\text {on }}+e_{\text {off }} \\
& \wedge \dot{E}=-e_{\text {on }}+e_{\text {off }}+e_{\text {cat }} \\
& \wedge \check{C}=e_{\text {on }}-e_{\text {off }}-e_{\text {cat }} \quad \wedge \underset{\text { next }}{C}=\underset{\text { next }}{e_{\text {on }}}-\underset{\text { next }}{e_{\text {off }}}-\underset{\text { next }}{e_{\text {cat }}} \\
& \wedge \dot{P}=\quad e_{\text {cat }} \wedge \underset{\text { next }}{P}=\quad \begin{array}{l}
e_{\text {cat }} \\
\text { next }
\end{array} \\
& \wedge \underset{\text { next }}{S}=S+S \wedge \wedge S \leq \underset{\text { next }}{S} \\
& \wedge \underset{\text { next }}{E}=E+E \subset \wedge \leq \underset{\text { next }}{E} \\
& \wedge \underset{\text { next }}{C}=C+C \wedge C \leq \underset{\text { next }}{C} \\
& \wedge \underset{\text { next }}{P}=P+P \wedge P \leq \underset{\text { next }}{P} \\
& \text { with } \\
& e_{\text {on }}=10^{6} \times \mathrm{S} \times \mathrm{E} \quad e_{\text {off }}=0.2 \times \mathrm{C} \quad e_{\text {cat }}=0.1 \times \mathrm{C} \\
& \underset{\text { next }}{e_{\text {on }}}=10^{6} \times \underset{\text { next }}{S} \times \underset{\text { next }}{E} \quad \underset{\substack{\text { next }}}{e_{\text {off }}}=0.2 \times \underset{\text { next }}{C} \quad \begin{array}{l}
e_{\text {next }} \\
e_{\text {eat }}
\end{array}=0.1 \times \underset{\text { next }}{C}
\end{aligned}
$$

Which constraints to retrieve Boolean transitions from \mathcal{R} ?

Expected transitions [SECP]:
$1100 \rightarrow{ }^{* *} 10 \rightarrow{ }^{* * *} 1$

Which constraints to retrieve Boolean transitions from \mathcal{R} ?

Expected transitions [SECP]:
$1100 \rightarrow{ }^{* *} 10 \rightarrow{ }^{* * *} 1$

Which constraints to retrieve Boolean transitions from \mathcal{R} ?

Expected transitions [SECP]:
$1100 \rightarrow{ }^{* *} 10 \rightarrow{ }^{* * *} 1$

Which constraints to retrieve Boolean transitions from \mathcal{R} ?

Expected transitions [SECP]:
$1100 \rightarrow{ }^{* *} 10 \rightarrow * * * 1$

Which constraints to retrieve Boolean transitions from \mathcal{R} ?

Expected transitions [SECP]:
$1100 \rightarrow{ }^{* *} 10 \rightarrow{ }^{* * *} 1$

Which constraints to retrieve Boolean transitions from \mathcal{R} ?

Expected transitions [SECP]:
$1100 \rightarrow{ }^{* *} 10 \rightarrow{ }^{* * *} 1$

Abstract simulation

Which constraints to retrieve Boolean transitions from \mathcal{R} ?

Expected transitions [SECP]:
$1100 \rightarrow{ }^{* *} 10 \rightarrow{ }^{* * *} 1$

Abstract simulation

Classic ODE simulation + Binarisation

Binarisation Boolean configuration sequence [SECP]

Midrange Median Mean	$1100 \longrightarrow 1000 \longrightarrow 1010 \longrightarrow 0010 \longrightarrow 0011 \longrightarrow 0101$ Above 0
$1100 \longrightarrow 1010 \longrightarrow 0011 \longrightarrow 0101$	
	$1100 \longrightarrow 1010 \longrightarrow 1000 \longrightarrow 0011 \longrightarrow 0101$

Outline

1. Preliminaries on reaction networks and Boolean networks
2. My method and its guarantees (where constraints pop in)

STEP 1: Retrieve constraints from the input reaction network Structure: influence graph

- 1.1: syntactic parsing of the reactions

Dynamics: Boolean transitions

- 1.2: ODEs simulation + binarisation
- 1.3: abstract simulation of the ODEs [Niehren et al., 2022]

STEP 2: BN synthesis with ASK\&D-BN [Vaginay et al., 2021]
3. Evaluation of the approach
4. Conclusion and perspectives

STEP 2:
 Boolean network synthesis with ASK\&D-BN

ASK\&D-BN [Vaginay et al., 2021]

structure constraints

dynamics constraints

ASK\&D-BN [Vaginay et al., 2021]

1. Local search species-wise synthesis of all the transition functions compatible with the given influence graph and time series

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

ASK\&D-BN [Vaginay et al., 2021]

1. Local search species-wise synthesis of all the transition functions compatible with the given influence graph and time series

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

> Answer-Set Programming

ASK\&D-BN [Vaginay et al., 2021]

1. Local search species-wise synthesis of all the transition functions compatible with the given influence graph and time series

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Answer-Set Programming
2. Global assembly produce all the possible BNs

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint
Search space: $2^{3^{k}}$ non-redundant DNF $=$ non-redundant disjunction of non-redundant conjunctions ideally: the set of minimal DNF with k inputs.

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint
Search space: $2^{3^{k}}$ non-redundant $\operatorname{DNF}=$ non-redundant disjunction of non-redundant conjunctions ideally: the set of minimal DNF with k inputs.

Pick a subset of non-redundant conjunctions without subsomption and not locally-adjacent
\qquad

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint
Search space: $2^{3^{k}}$ non-redundant $\operatorname{DNF}=$ non-redundant disjunction of non-redundant conjunctions ideally: the set of minimal DNF with k inputs.

Pick a subset of non-redundant conjunctions without subsomption and not locally-adjacent

Examples

invalid candidates:

$$
\begin{aligned}
& (A \wedge \neg B) \vee(A \wedge \neg B) \vee(\neg A \wedge \neg C) \quad(A \wedge \neg B) \vee(\neg A \wedge \neg C) \\
& (A \wedge A \wedge \neg B) \vee(\neg A \wedge \neg C) \\
& (A) \vee(A \wedge B) \\
& (A \wedge B) \vee(A \wedge \neg B)
\end{aligned}
$$

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

influence graph of the Boolean network \subseteq influence graph of the reaction network

Do not select a conjunction that uses a forbidden literal - Examples
invalid conjunction: $\neg \mathrm{A} \wedge \neg \mathrm{C}$

valid conjunction: $\neg C \wedge B$

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

```
putative
    input
```


ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

input influence graph (unsigned)

AC C

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

putative input	output	
C	A	
0	0	3
1	1	2
BC	B	
11	0	2
AC	C	
00	1	1
01	0	2
10	1	3

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint
(2) input: time series
X_{t} : continuous value of X at time t
θ : binarisation threshold for X

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint
(2) input: time series
X_{t} : continuous value of X at time t
θ : binarisation threshold for X

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint
(2) input: time series
X_{t} : continuous value of X at time t
θ : binarisation threshold for X
\mathcal{U} : set of unexplained time steps

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(2) input: time series

X_{t} : continuous value of X at time t
θ : binarisation threshold for X
\mathcal{U} : set of unexplained time steps
$E=\sum_{t \in \mathcal{U}}\left|\theta-X_{t}\right| \quad$ To minimise (ideally 0)

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal) \rightsquigarrow most general conditions
putative input observed output
AB
X
00
$01 \quad 0$

10 1
11

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal) \rightsquigarrow most general conditions

putative input	observed output	possible completions			
AB	X				
00	0	0	1	0	1
01	1	0	0	0	0
10		1	1	1	1
11		0	0	1	1

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal) \rightsquigarrow most general conditions

putative input	observed output	possible completions			
	X				
00		0	1	0	1
01	0	0	0	0	0
10	1	1	1	1	1
11		0	0	1	1
subset minimal candidates		$A \wedge \neg B$	$\neg \mathrm{B}$	A	$A \vee \neg B$
size		2	1	1	2
			ard.		

ASK\&D-BN— Global assembly

Cartesian product of the set of transition functions synthesised for each species

$$
\begin{aligned}
& \text { fra } \\
& f_{\mathrm{A}}^{1} \\
& f_{\mathrm{A}}^{2} \\
& f_{\mathrm{B}}^{1}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{B}_{1}=\left\{f_{\mathrm{A}}^{1}, f_{\mathrm{B}}^{1}, f_{\mathrm{C}}^{1}\right\} \\
& \mathcal{B}_{2}=\left\{f_{\mathrm{A}}^{1}, f_{\mathrm{B}}^{1}, f_{\mathrm{C}}^{2}\right\} \\
& \mathcal{B}_{3}=\left\{f_{\mathrm{A}}^{1}, f_{\mathrm{B}}^{1}, f_{\mathrm{C}}^{3}\right\} \\
& \mathcal{B}_{4}=\left\{f_{\mathrm{A}}^{2}, f_{\mathrm{B}}^{1}, f_{\mathrm{C}}^{1}\right\} \\
& \mathcal{B}_{5}=\left\{f_{\mathrm{A}}^{2}, f_{\mathrm{B}}^{1}, f_{\mathrm{C}}^{2}\right\} \\
& \mathcal{B}_{6}=\left\{f_{\mathrm{A}}^{2}, f_{\mathrm{B}}^{1}, f_{\mathrm{C}}^{3}\right\}
\end{aligned}
$$

Outline

1. Preliminaries on reaction networks and Boolean networks
2. My method and its guarantees (where constraints pop in)
3. Evaluation of the approach
4. Conclusion and perspectives

Evaluation of the approach

Evaluation of the approach

1. The BN synthesis itself [Vaginay et al., 2021] ASK\&D-BN versus REVEAL ${ }^{1}$, Best-Fit ${ }^{2}$ and Caspo-TS ${ }^{3}$
2. One specific variant of the complete approach on real-world reaction networks [Vaginay et al., 2021, Vaginay et al., 2022] influence graph + time series and midrange binarisation
3. Several variants of the complete approach on $\boldsymbol{\mathcal { R }}_{\text {enz }}$ compare concrete and abstract simulation
${ }^{1}$ [Liang et al., 1998] ${ }^{2}$ [Lähdesmäki et al., 2003] ${ }^{3}$ [Ostrowski et al., 2016]

Evaluation of the BN synthesis step

Evaluation of the BN synthesis step

A. thaliana
 5 species, 10 transitions

- REVEAL fails

Evaluation of the BN synthesis step

A. thaliana

5 species, 10 transitions

- REVEAL fails
yeast
4 species, 7 transitions

- Best-Fit lacks consistency

Evaluation of the BN synthesis step

A. thaliana
 5 species, 10 transitions

- REVEAL fails
- Caspo-TS returns more BNs, some of them with poor coverage because of reachability constraint
- Best-Fit lacks consistency

Evaluation of the BN synthesis step

A. thaliana
 5 species, 10 transitions

- REVEAL fails
- Caspo-TS returns more BNs, some of them with poor coverage because of reachability constraint
yeast
4 species, 7 transitions

- Best-Fit lacks consistency
- ASK\&D-BN returns a small number of BN, with good coverage and low variance \checkmark

Evaluation of the BN synthesis step

A. thaliana
 5 species, 10 transitions

- REVEAL fails
- Best-Fit lacks consistency
- Caspo-TS returns more BNs, some of them with poor coverage because of reachability constraint
- ASK\&D-BN returns a small number of BN, with good coverage and low variance \checkmark
\sim Confirmed on >300 datasets generated from existing BNs from the repository of PyBoolNet

Outline

1. Preliminaries on reaction networks and Boolean networks
2. My method and its guarantees (where constraints pop in)
3. Evaluation of the approach
4. Conclusion and perspectives

Conclusion and perspectives

Conclusion

Automatic synthesis of Boolean networks from a given reaction network, with guarantees. \checkmark

Conclusion

Automatic synthesis of Boolean networks from a given reaction network, with guarantees. \checkmark

- Methodology: Boolean networks synthesis from constraints Structure: Influence graph from syntactic parsing of the reactions
- captures all the direct influences among species

Dynamics: Boolean transitions from numerical simulation of the ODEs + binarisation

- good approximation or the analytical solution
- but we lose causality from abstract simulation of the ODEs
- correct overapproximation of perfect Euler that captures causality

Conclusion

Automatic synthesis of Boolean networks from a given reaction network, with guarantees. \checkmark

- Methodology: Boolean networks synthesis from constraints Structure: Influence graph from syntactic parsing of the reactions
- captures all the direct influences among species

Dynamics: Boolean transitions from numerical simulation of the ODEs + binarisation

- good approximation or the analytical solution
- but we lose causality
from abstract simulation of the ODEs
- correct overapproximation of perfect Euler that captures causality
- Implementation: the SBML2BNET pipeline (+ ASK\&D-BN)

Conclusion

Automatic synthesis of Boolean networks from a given reaction network, with guarantees. \checkmark

- Methodology: Boolean networks synthesis from constraints Structure: Influence graph from syntactic parsing of the reactions
- captures all the direct influences among species

Dynamics: Boolean transitions from numerical simulation of the ODEs + binarisation

- good approximation or the analytical solution
- but we lose causality
from abstract simulation of the ODEs
- correct overapproximation of perfect Euler that captures causality
- Implementation: the SBML2BNET pipeline (+ ASK\&D-BN)
- Evaluation

From reactions to Boolean influences with guarantees

 Why?

1. Use BNs to facilitate some analyses
2. Explore the formal relationship between RN and BN
3. Improve the BN synthesis methods
\qquad

Perspectives

1. To facilitate some analyses

Make SBML2BNET easy to use, use more evaluation criteria, include more knowledge in the synthesis, analyse FO-BNN themselves (process more RN, compute attractors $\left({ }^{*}\right)$)
2. Explore the formal relationship between RN and BN Two conjectures to investigate, reverse process(*)
3. Improve the BN synthesis methods Investigate, in a controled environnement

- when we can't fullfill the constraints(*)
- overfitting to the sequence of configuration?
- impact of the choice of the binarisation procedure and error measure

Perspectives

1. To facilitate some analyses

Make SBML2BNET easy to use, use more evaluation criteria, include more knowledge in the synthesis, analyse FO-BNN themselves (process more RN, compute attractors(*))
2. Explore the formal relationship between RN and BN Two conjectures to investigate, reverse process(*)
3. Improve the BN synthesis methods Investigate, in a controled environnement

- when we can't fullfill the constraints(*)
- overfitting to the sequence of configuration?
- impact of the choice of the binarisation procedure and error measure

Publications

[^0]
Thank you for your attention.

References I

- [Bornholdt, 2005]
S. Bornholdt

Less Is More in Modeling Large Genetic Networks, 2005

- [Fages, Soliman, 2008a]
F. Fages, S. Soliman,

Abstract Interpretation and Types for Systems Biology,
Theoretical Computer Science, vol. 403, pp. 52-70, 2008

- [Fages, Soliman, 2008b]
F. Fages, S. Soliman,

From Reaction Models to Influence Graphs and Back: A Theorem,
Lecture Notes in Computer Science, pp. 90-102 2008

- [Hoops et al., 2006]
S. Hoops et al.

COPASI-a COmplex PAthway SImulator,
Bioinformatics, vol. 22, pp. 3067-3074 2006

References II

- [Kohl et al., 2010]
P. Kohl et al.

Systems Biology: An Approach,
Clinical Pharmacology \& Therapeutics vol. 88-1 pp. 25-33 2010,

- [Lähdesmäki et al., 2003]
H. Lähdesmäki et al.

On Learning Gene Regulatory Networks under the Boolean Network Model, Machine Learning, vol. 52-1 pp. 147-167 2003,

- [Liang et al., 1998]
S. Liang et al.

REVEAL, a General Reverse Engineering Algorithm for Inference of Genetic
Network Architectures
Pacific Symposium on Biocomputing. pp. 18-29, 1998,

- [Malik-Sheriff et al., 2020]
R. Malik-Sheriff et al.

BioModels-15 Years of Sharing Computational Models in Life Science
Nucleic Acids Research vol. 48-D1, pp. D407-D415, 2020

References III

- [Niehren et al., 2022]
J. Niehren et al.

Abstract Simulation of Reaction Networks via Boolean Networks
CMSB: International Conference on Computational Methods in Systems
Biology 2022,

- [Ostrowski et al., 2016]
M. Ostrowski et al.

Boolean Network Identification from Perturbation Time Series Data Combining Dynamics Abstraction and Logic Programming
Biosystems vol. $=149$, pp. 139-153, 2016

- [Vaginay et al., 2021]
A. Vaginay, et al.

Automatic Synthesis of Boolean Networks from Biological Knowledge and Data
Communications in Computer and Information Science pp. 156-170, 2021

References IV

- [Vaginay et al., 2021] A. Vaginay, et al. From Quantitative SBML Models to Boolean Networks Complex Networks \& Their Applications X 2021
- [Vaginay et al., 2022] A. Vaginay, et al. From Quantitative SBML Models to Boolean Networks Applied Network Science vol. 7-1 pp. 1-23, 2022

Our abstraction versus other abstractions

Reaction-thinking
Reaction network

Boolean network
Influence thinking

Our abstraction versus other abstractions

Reaction-thinking
Reaction network

differential

Boolean network
Influence thinking

Our abstraction versus other abstractions
Reaction-thinking Reaction network differential Approximation

Concrete simulation

Boolean network
Influence thinking

Our abstraction versus other abstractions
Reaction-thinking Reaction network

Our abstraction versus other abstractions
Reaction-thinking Reaction network

Our abstraction versus other abstractions
Reaction-thinking Reaction network

stochastic
\(\underbrace{}_{\substack{correct
abstration}}\)
discrete

Boolean

Boolean network
Influence thinking
[Fages, Soliman, 2008a]

Our abstraction versus other abstractions
Reaction-thinking Reaction network

[Fages, Soliman, 2008a]

Our abstraction versus other abstractions
Reaction-thinking
Reaction network

ASK\&D-BN— Local search

Candidate transition function
Search space: $2^{3^{|\mathcal{S}|}}$ non-redundant $\mathrm{DNF}=$ non-redundant disjunction
of non-redundant conjunctions

ASK\&D-BN— Local search

Candidate transition function
Search space: $2^{3^{|S|}}$ non-redundant $\mathrm{DNF}=$ non-redundant disjunction of non-redundant conjunctions

Pick a subset of non-redundant conjunctions

```
% GIVEN : conj(ID, Component, Sign}
% conj(ID, Species, Sign}
conj(1, a, 1). conj(1, b,-1). conj(1, c, 0).% A \ . . . B
conj(2, a, -1). conj(2, b, 0). conj(2, c, -1). % \negA^\negC
conj(3, a, -1). conj(3, b,-1). conj(3, c, -1). % \negA\wedge\negB\wedge 价
```

1\{conjTakenID(0..maxNbPossibleConj)\}. \% choice rule

ASK\&D-BN— Local search

Candidate transition function
Search space: $2^{3^{|\mathcal{S}|}}$ non-redundant $\mathrm{DNF}=$ non-redundant disjunction of non-redundant conjunctions

```
% GIVEN : conj(ID, Component, Sign}
% conj(ID, Species, Sign}
conj(1, a, 1). conj(1, b,-1). conj(1, c, 0).% A \ . . . B
conj(2, a, -1). conj(2, b, 0). conj(2, c, -1). % \negA\wedge ᄀC
conj(3, a, -1). conj(3, b, -1). conj(3, c, -1).% \negA\wedge\negB\wedge\negC
```

-.
1\{conjTakenID(0..maxNbPossibleConj)\}. \% choice rule

ASK\&D-BN— Local search

Structure constraints
influence graph of the Boolean network \subseteq influence graph of the reaction network

Do not select a conjunction that uses a forbidden literal ig(ParentID, $x, V):-$ conjTaken(ConjID, ParentID, V); V!=0. :- ig(ParentID, x, V) ; not pig(ParentID, x, V).
invalid conjunction: $\neg \mathrm{A} \wedge \neg \mathrm{C}$

valid conjunction: $\neg C \wedge B$

ASK\&D-BN— Local search

Dynamics constraints

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

```
putative
    input
```


ASK\&D-BN— Local search

Dynamics constraints

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

input influence graph (unsigned)

ASK\&D-BN— Local search

Dynamics constraints

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

$010 \underset{(2)}{\longrightarrow} 011 \underset{(3)}{\longrightarrow} 001$
$\overline{B C}$

AC C

ASK\&D-BN— Local search

Dynamics constraints

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

$010 \underset{(1)}{C} 011 \xrightarrow[(2)]{A, B, C} 100 \xrightarrow[(3)]{A, C} 001$

BC B

AC C

ASK\&D-BN— Local search

Dynamics constraints

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

ASK\&D-BN— Local search

Dynamics constraints

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

ASK\&D-BN— Local search

Dynamics constraints

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

$$
010 \underset{(1)}{C} 011 \xrightarrow[(2]{A, B, C} 100 \xrightarrow[(3]{A, C} 001
$$

putative input	output	
C	A	
0	0	3
1	1	2
BC	B	
11	0	2
AC	C	
00	1	1
01	0	2
10	1	3

ASK\&D-BN— Local search

Dynamics constraints

(2) input: time series

\#minimize\{E@2 : error(E)\}. \%
X_{t} : continuous value of X at time t
θ : binarisation threshold for X

ASK\&D-BN— Local search

Dynamics constraints

(2) input: time series

\#minimize\{E@2 : error(E)\}. \%
X_{t} : continuous value of X at time t
θ : binarisation threshold for X

ASK\&D-BN— Local search

Dynamics constraints

(2) input: time series

\#minimize\{E@2 : error(E)\}. \%
X_{t} : continuous value of X at time t
θ : binarisation threshold for X
\mathcal{U} : set of unexplained time steps

ASK\&D-BN— Local search

Dynamics constraints

(2) input: time series

\#minimize\{E@2 : error(E)\}. \%
X_{t} : continuous value of X at time t
θ : binarisation threshold for X
\mathcal{U} : set of unexplained time steps
$E=\sum_{t \in \mathcal{U}}\left|\theta-X_{t}\right| \quad$ To minimise (ideally 0)

ASK\&D-BN— Local search

Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal)
\rightsquigarrow most general conditions

```
sizeconj(C, S):-conjTakenID(C);S=#sum{IV|,N:conj(C, N, V)} .
sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)} .
#minimize{S@1 : sizeDNF(S)}. % Find mincard expressions
% + generate all combinations to find all the subset min expressions
```

putative input observed output
AB X
00
$01 \quad 0$
10 1
11

ASK\&D-BN— Local search

Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal)
\rightsquigarrow most general conditions

```
sizeconj(C, S):-conjTakenID(C);S=#sum{IVI,N:conj(C, N, V)} .
sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)} .
#minimize{S@1 : sizeDNF(S)}. % Find mincard expressions
% + generate all combinations to find all the subset min expressions
```

putative input	observed output	possible completions			
AB	X				
00		0	1	0	1
01	0	0	0	0	0
10	1	1	1	1	1
11		0	0	1	1

ASK\&D-BN— Local search

Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal)
\rightsquigarrow most general conditions

```
sizeconj(C, S):-conjTakenID(C);S=#sum{|V|,N:conj(C, N, V)} .
sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)} .
#minimize{S@1 : sizeDNF(S)}. % Find mincard expressions
% + generate all combinations to find all the subset min expressions
```

putative input$A B$	observed output X	possible completions			
00		0	1	0	1
01	0	0	0	0	0
10	1	1	1	1	1
11		0	0	1	1
subset minimal candidates		$\mathrm{A} \wedge \neg \mathrm{B}$	$\neg \mathrm{B}$	A	$A \vee \neg B$
size		2	1	1	2

FOBNN fix-points with SAT

Given an FOBNN ϕ with variables $\mathcal{V}=\bigcup_{\mathrm{X} \in \mathcal{S}}\{\mathrm{X}, \stackrel{\circ}{\mathrm{X}}, \underset{\text { next }}{\mathrm{X}}, \underset{\mathrm{next}}{\underset{\mathrm{X}}{ }}\}$, find the signed assignments α of ϕ such that:

$$
\forall \mathbf{X} \in \mathcal{S}: \alpha(\mathbf{X})=\alpha(\underset{\text { next }}{\mathbf{X}}) \text { (and no others!) }
$$

Hans-Jörg Schurr (Univ. of lowa).

Functional dependency for detecting dynamics conflicts

Set of attributes \mathcal{V} (relation scheme)
A set r of tuples that maps each attributes to a value of its domain $(t[X] \in \operatorname{dom}(X))$

A functional dependency (FD) F is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V}$ F holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.
g3-error: minimal proportion of tuples to remove from r to satisfy $F \sim$ coverage measure
Simon Vilmin (AMU) and Pierre Faure-Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symetry, transitivity, antisymetry)

Functional dependency for detecting dynamics conflicts

Set of attributes \mathcal{V} (relation scheme)
A set r of tuples that maps each attributes to a value of its domain $(t[X] \in \operatorname{dom}(X))$

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V}$ f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.
g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Simon Vilmin (AMU) and Pierre Faure-Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of tuples that maps each attributes to a value of its domain $(t[X] \in \operatorname{dom}(X))$

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V}$ f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.
g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Simon Vilmin (AMU) and Pierre Faure-Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V}$
f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.
g3-error: minimal proportion of tuples to remove from r to satisfy $f \leadsto$ coverage measure

Simon Vilmin (AMU) and Pierre Faure-Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

r	A	B	C	$\underset{\text { next }}{\mathrm{A}}$	$\underset{\text { next }}{\mathrm{B}}$	$\underset{\text { next }}{\mathrm{C}}$	$X \subseteq \mathcal{S}$
t_{1}	0	0	0	0	0	0	\bullet
t_{2}	0	1	1	1	0	0	\bullet
t_{3}	0	0	0	0	0	1	\bullet

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V}$
f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.
g3-error: minimal proportion of tuples to remove from r to satisfy $f \leadsto$ coverage measure

Simon Vilmin (AMU) and Pierre Faure-Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

r	A	B	C	$\underset{\text { next }}{\mathrm{A}}$	$\underset{\text { next }}{\mathrm{B}}$	$\underset{\text { next }}{\mathrm{C}}$	$X \subseteq \mathcal{S}$
t_{1}	0	0	0	0	0	0	\bullet
t_{2}	0	1	1	1	0	0	\bullet
t_{3}	0	0	0	0	0	1	\bullet

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.
g3-error: minimal proportion of tuples to remove from r to satisfy $f \leadsto$ coverage measure

Simon Vilmin (AMU) and Pierre Faure-Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity,
antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

r	A	B	C	$\underset{\text { next }}{\mathrm{A}}$	$\underset{\text { next }}{\mathrm{B}}$	$\underset{\text { next }}{\mathrm{C}}$	$X \subseteq \mathcal{S}$
t_{1}	0	0	0	0	0	0	\bullet
t_{2}	0	1	1	1	0	0	\bullet
t_{3}	0	0	0	0	0	1	\bullet

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.
g3-error: minimal proportion of tuples to remove from r to satisfy $f \leadsto$ coverage measure

Simon Vilmin (AMU) and Pierre Faure-Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity,
antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

r	A	B	C	$\underset{\text { next }}{\mathrm{A}}$	$\underset{\text { next }}{\mathrm{B}}$	$\underset{\text { next }}{\mathrm{C}}$	$X \subseteq \mathcal{S}$
t_{1}	0	0	0	0	0	0	\bullet
t_{2}	0	1	1	1	0	0	\bullet
t_{3}	0	0	0	0	0	1	\bullet

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \leadsto$ coverage measure

Simon Vilmin (AMU) and Pierre Faure-Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity,
antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

r	A	B	C	$\underset{\text { next }}{\mathrm{A}}$	$\underset{\text { next }}{\mathrm{B}}$	$\underset{\text { next }}{\mathrm{C}}$	$X \subseteq \mathcal{S}$
t_{1}	0	0	0	0	0	0	\bullet
t_{2}	0	1	1	1	0	0	\bullet
t_{3}	0	0	0	0	0	1	\bullet

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \leadsto$ coverage measure

Simon Vilmin (AMU) and Pierre Faure-Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity,
antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

r	A	B	C	$\underset{\text { next }}{\mathrm{A}}$	$\underset{\text { next }}{\mathrm{B}}$	$\underset{\text { next }}{\mathrm{C}}$	$X \subseteq \mathcal{S}$
t_{1}	0	0	0	0	0	0	\bullet
t_{2}	0	1	1	1	0	0	\bullet
t_{3}	0	0	0	0	0	1	\bullet

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \leadsto$ coverage measure

Simon Vilmin (AMU) and Pierre Faure-Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

r	A	B	C	$\underset{\text { next }}{\mathrm{A}}$	$\underset{\text { next }}{\mathrm{B}}$	$\underset{\text { next }}{\mathrm{C}}$	$X \subseteq \mathcal{S}$
t_{1}	0	0	0	0	0	0	\bullet
t_{2}	0	1	1	1	0	0	\bullet
t_{3}	0	0	0	0	0	1	\bullet

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \leadsto$ coverage measure

Simon Vilmin (AMU) and Pierre Faure-Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

r	A	B	C	$\underset{\text { next }}{\mathrm{A}}$	$\underset{\text { next }}{\mathrm{B}}$	$\underset{\text { next }}{\mathrm{C}}$	$X \subseteq \mathcal{S}$
t_{1}	0	0	0	0	0	0	\bullet
t_{2}	0	1	1	1	0	0	\bullet
t_{3}	0	0	0	0	0	1	\bullet

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \leadsto$ coverage measure

Simon Vilmin (AMU) and Pierre Faure-Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Learn reaction networks from Boolean transitions

Implication base with variables in $\mathcal{S}: \mathcal{R}=\left\{R_{i} \rightarrow P_{i}\right\}_{i=1 \ldots m}$
Closed-set: "element of $\mathcal{P}(\mathcal{S})$ such that we cannot derive anything new using \mathcal{R} "
Closure system $=$ the set \mathcal{C} of closed-sets of \mathcal{R}
\mathcal{C} ordered by $\subseteq \sim$ a lattice

$$
\begin{aligned}
& \mathcal{R}=\{ \\
& \mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D} \\
& \mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \rightarrow \mathrm{D} \\
& \mathcal{R}_{3}: \mathrm{B}+\mathrm{D} \rightarrow \mathrm{C} \\
& \quad\}
\end{aligned}
$$

Simon Vilmin (AMU), Loïc Paulevé? (LABRI)

Learn reaction networks from Boolean transitions

Reaction network with species in $\mathcal{S}: \mathcal{R}=\left\{R_{i} \rightarrow P_{i}\right\}_{i=1 \ldots m}$
Closed-set: "element of $\mathcal{P}(\mathcal{S})$ such that we cannot derive anything new using \mathcal{R} "
Closure system $=$ the set \mathcal{C} of closed-sets of \mathcal{R}
\mathcal{C} ordered by $\subseteq \sim$ a lattice

$$
\begin{aligned}
& \mathcal{R}=\{ \\
& \mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D} \\
& \mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \rightarrow \mathrm{D} \\
& \mathcal{R}_{3}: \mathrm{B}+\mathrm{D} \rightarrow \mathrm{C} \\
& \quad\}
\end{aligned}
$$

given a closure system, find the implication base(s)

$$
\stackrel{?}{=}
$$

given Boolean fixed-points, find the reaction network(s)

Learn reaction networks from Boolean transitions

Minimal DNF

Given a set S of inputs for which a function f eval. to 1 , each minimal-by-inclusion set of nodes that covers exactly S forms a (subset-)minimal DNF of f.
f might have several (subset-)minimal DNFs.
Example: $S=\{a b c, a \bar{b} c, \bar{a} b c, \bar{a} b \bar{c}, \bar{a} \bar{b} c\}$ (light green) $\sim\{\bar{a} b, c\}$ (dark green)

Not well-formed reaction networks

$$
X \xrightarrow{k \times Y} \text { _ }
$$

$\frac{\partial \mathrm{X}}{\partial \mathrm{Y}} \neq 0$ NOT captured by the syntactic influence graph.

Impact of SBML inconsistencies on structure extraction

Ex. BIOMD n ${ }^{\circ}$ 44: 1 BN generated; coverage $=0.55$ some kinetics use components not listed in the reactants nor modifiers \rightarrow incomplete SIG (missing parents)

$$
\mathrm{A}+\mathrm{B} \xrightarrow{f(\mathrm{~A}, \mathrm{~B}, \mathrm{E})} \mathrm{C}
$$

Impact of SBML inconsistencies on structure extraction

Ex. BIOMD ${ }^{\circ}$ 44: 1 BN generated; coverage $=0.55$ some kinetics use components not listed in the reactants nor modifiers \rightarrow incomplete SIG (missing parents)

$$
A+B \xrightarrow{f(A, B, E)} C
$$

$>60 \%$ of SBML models from Biomodels are not "well-formed"4, but some can be fixed \rightarrow add a step in the pipeline

Results to real-world reaction networks (from BioModels ${ }^{5}$)

Input: an extended reaction network rules and events
Output: a set of compatible Boolean networks, according to ASK\&D-BN

Setting:

- hard structure constraint (extended influence graph)
- soft dynamics constraints (time series and midrange binarisation)
- mincard DNF

Result:

- on 155 reaction networks processed in less than 30 hours
- we synthesise perfect Boolean networks for $\sim 90 \%$ of them 139/155 sets of BNs have a coverage proportion median = 1
${ }^{5}$ [Malik-Sheriff et al., 2020]

Comparison of two settings on $\boldsymbol{\mathcal { R }}_{\text {enz }}$

- influence graph
- time series
- binarised time series
midrange (0.8) and median (0.6):

$$
\begin{aligned}
f_{\mathrm{S}} & :=\neg \mathrm{E} \\
f_{\mathrm{E}} & :=\neg \mathrm{S} \\
f_{\mathrm{C}} & :=\mathrm{S} \\
f_{\mathrm{P}} & :=\mathrm{C}
\end{aligned}
$$

\rightarrow Coverage depends on the binarisation procedure, BNs miss some influences

- full graph from abstract simulation

$$
\begin{aligned}
& f_{\mathrm{S}}:=\mathrm{C} \vee \mathrm{~S} \\
& f_{\mathrm{E}}:=\mathrm{E} \vee \mathrm{C} \\
& f_{\mathrm{C}}:=(\mathrm{E} \wedge \mathrm{~S}) \vee \mathrm{C} \\
& f_{\mathrm{P}}:=\mathrm{C} \vee \mathrm{P}
\end{aligned}
$$

\rightarrow Perfect coverage, but does not comply with the influence graph

[^0]: J. Niehren, C. Lhoussaine and AV. Core SBML and its Formal Semantics CMSB: International Conference on Computational Methods in Systems Biology 2023
 Abstract simu. J. Niehren, AV, and C. Versari. Abstract Simulation of Reaction Networks via Boolean Networks CMSB: International Conference on Computational Methods in Systems Biology 2022
 SBML2BNET AV, T. Boukhobza, and M. Smaïl-Tabbone. From Quantitative SBML Models to Boolean Networks CNA: Complex Networks \& Their Applications X 2022
 SBML2BNET AV, T. Boukhobza, and M. Smaïl-Tabbone. From Quantitative SBML Models to Boolean Networks Applied Network Science 2022
 ASK\&D-BN AV, T. Boukhobza, and M. Smaïl-Tabbone. Automatic Synthesis of Boolean Networks from Biological Knowledge and Data OLA: Optimization and Learning 2021
 A. Hirtz, N. Lebourdais, F. Rech, Y. Bailly, AV, M. Smaïl-Tabbone,
 H. Dubois-Pot-Schneider, and H. Dumond. GPER Agonist G-1 Disrupts Tubulin Dynamics and Potentiates Temozolomide to Impair Glioblastoma Cell Proliferation Cells 2021

