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Systems Biology
Formal modelling and reasoning about biological systems

A set of species of interest genes, proteins, cells, animals. . .

Questions

How does the system evolve?
Is the population of some cell

type stable over time?

How to control the system?
Cure a pathological system

Produce more of some species of

interest
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The workflow of system biology [Kohl et al., 2010]

Biological system Wet data

Dry data Model
experiment

analysis

experiment

analysis

test

test

Wet lab
in vivo

Dry lab
in silico

synthesis

Hypotheses

Definition (Model)

Abstract representation (abbreviated and convenient)

of the reality (more complex and detailed).
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A dichotomic zoo of modelling approaches

Bayesian network

Constraint based model

Petri net

Process algebra

A + B ! C

Reaction network

((b(x , de)[E ]) || (B(y , dI )[I ]))

bh(x , dE )bh(y , dI )(E || I )

a b

p q

c

a b

c d e

Cellular automata

Hybrid system
dx
dt

dx
dt

dx
dt

Agent-based model

Differential equations

Boolean network
a b

c d
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Principles shared across modelling approaches

Synthesis

▶ from available
knowledge and data
about the structure and

the dynamics

▶ parameter fitting task
find models that optimise

some criteria

Usage

▶ encodes our knowledge,
cannot be exact

▶ various analyses
simulation, control

Use the simplest model that contains enough information to
answer the question at hand. [Bornholdt, 2005]
Boolean networks are simpler than reaction networks.

Problem statement

Automatic transformation (abstraction) of
reaction networks to Boolean networks
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From reactions to Boolean influences with guarantees
Why?

Biological system Wet data

Dry data Model
experiment

analysis

experiment

analysis

test

test

Wet lab
in vivo

Dry lab
in silico

reaction network

Boolean network

experimentDry data Model

synthesis

Hypotheses

1. Use BNs to facilitate some analyses

2. Explore the formal relationship between RN and BN

3. Improve the BN synthesis methods
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Outline

1. Preliminaries on reaction networks and Boolean networks

2. My method and its guarantees

3. Evaluation of the approach

4. Link to other abstractions

5. Conclusion and perspectives
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Preliminaries



Reaction networks, structure and dynamics

R = {Ri : Ri
ei−→ Pi}i=1...m

reaction, reactants, products, kinetics

Reaction graph
(S ∪R,E ⊆ (S ×R) ∪ (R× S))

Differential semantics
ordinary differential equation (ODE){
Ẋ =

∑
i∈1...m ei × (Pi (X)− Ri (X))

}
X∈S

Example

S = {A,B,C}

R1 : A + B
e1−→ 2× C

R2 : A + C
e2−→ A + B

A

B CR1

R2


Ȧ = −1× e1

Ḃ = − 1× e1 + 1× e2

Ċ = 2× e1 + (−1)× e2

t

A
B

C

amount
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Boolean network, structure and dynamics

One transition function per species in S:{
fX : B|S| → B

}
X∈S B = {0, 1}

Influence graph
IG = (S,E ⊆ S × S, σ : E → {+,−, +−})

Transition graph (TG)
(B|S|,E ⊆ B|S| × B|S|)
general asynchronous update scheme:
P(S) \ ∅

Example

S = {A,B,C}
fA :=0

fB :=(B ∧ ¬C) ∨ (¬B ∧ C)

fC :=¬C

A

B

C

+
−

+
−

−
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From RN to BN with guarantees
Which ones?

Structure guaranty: conserve direct influences among species

IG of input RN ⊇ IG of output BN

A

B

C

+

+
−

+

+
−

−

A

B

C

+
−

+
−

−

Dynamics guaranty: recover the Boolean transitions

Boolean transitions from input RN ⊆ gen. async. TG of output BN

{
Ẋ =

∑
i∈1...m ei × (Ri (X)− Pi (X))

}
X∈S

010 → 011 → 111 → 110

Coverage: proportion of recovered transitions (ideally 100%)
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Outline
1. Preliminaries on reaction networks and Boolean networks

2. My method and its guarantees

SBML2BNET

STEP 1: Retrieve from the input reaction network
Structure: influence graph
Dynamics: Boolean transitions

▶ binarised time series from classic simulation of the ODEs
▶ abstract simulation of the ODEs [Niehren et al., 2022]

STEP 2: BN synthesis with ASK&D-BN [Vaginay et al., 2021]

3. Evaluation of the approach

4. Link to other abstractions

5. Conclusion and perspectives

SBML2BNET – STEP 1: Retrieve structure and dynamics 12 / 38



SBML2BNET – STEP 1:
Retrieve an influence graph and

Boolean transitions



Running example Renz

Ron Rcat︷ ︸︸ ︷︷ ︸︸ ︷
E + S

eon
⇄
eoff

C
ecat−−−−→ E + 2× P︸ ︷︷ ︸

Roff

Its ODEs (reconstructed)
Ṡ = − eon + eoff

Ė = − eon + eoff + ecat

Ċ = eon − eoff + ecat

Ṗ = 2× ecat

Its parameters (given)

eon = 106 × E× S

eoff = 0.2× C

ecat = 0.1× C

SBML2BNET – STEP 1: Retrieve structure and dynamics 13 / 38



Retrieve the influence graph of a reaction network

Contribution

Implement the routines from
[Fages, Soliman, 2008b]

“If Y is a reactant and X
disapears: Y

−−_ X”

Guarantees

Overapproximates the
possible signs of ∂X

∂Y
→ capture all the direct
influences between the
species

Influence graph of Renz

S

E

C

P

−

−
+

−

−
+

−

+

+

+
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Retrieve Boolean transitions from a reaction network
Numerical simulation and binarisation

Contribution

Use dedicated tools for simulation
Apply binarisation procedure

Guarantees

Approximate the real solution of
the ODE with good accuracy
[Hoops et al., 2006]
but causations are lost

For Renz:

Ron Rcat︷ ︸︸ ︷︷ ︸︸ ︷
E + S

eon
⇄
eoff

C
ecat−−−−→ E + 2× P︸ ︷︷ ︸

Roff

Expected transitions: 1100 → ∗ ∗ 10 → ∗ ∗ ∗1

Binarisation Boolean configuration sequence SECP

Midrange 1100 → 1000 → 1010 → 0010 → 0011 → 0101
Median 1100 → 1010 → 0011 → 0101
Mean 1100 → 1010 → 1000 → 0011 → 0101

Above 0 1100 → 1111 → 1011 → 1111 → 0111
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Retrieve Boolean transitions from a reaction network
Abstract simulation — Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022]
Use the rule of signs to reason on the causal relationship between the signs
(S = {−1, 0, 1}) of the variables values (species amount and derivatives) of
the ODE system

X was above 0 and its derivative was negative
plus − plus = unknown ; nondeterminism
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Retrieve Boolean transitions from a reaction network
Abstract simulation — Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022]
Use the rule of signs to reason on the causal relationship between the signs
(S = {−1, 0, 1}) of the variables values (species amount and derivatives) of
the ODE system

X
next

X X̊

11 11

11 11

10

11
1111

11

10

11
11 11

10 10

11

Impossible!

10

X was above 0 and its derivative was negative
plus − plus = unknown ; nondeterminism
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Retrieve Boolean transitions from a reaction network
Abstract simulation — In practice

Contribution

V =
⋃
X∈S

{X, X̊, X
next

, X̊
next

}

▶ Causal relationships encoded
by a first-order logic formula ϕ

▶ Solve ϕ on the structure of
signs S = {−1, 0, 1}

▶ Restrict the solutions on
S ∪ S

next

⇝ relation B|S| × B| S
next

|

Guarantee

▶ Keep the causalities of
changes

▶ Proof of correctness:
overapproximation of an ideal
Euler simulation (perfectly
adjusted time step and no
computation error)

FOBNN: First-Order Boolean networks with nondeterministic updates
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Retrieve Boolean transitions from a reaction network
Abstract simulation — Example on Renz

S̊ = − eon + eoff ∧ S̊
next

= − eon
next

+ eoff
next

∧ E̊ = − eon + eoff + ecat ∧ E̊
next

= − eon
next

+ eoff
next

+ ecat
next

∧ C̊ = eon − eoff − ecat ∧ C̊
next

= eon
next

− eoff
next

− ecat
next

∧ P̊ = ecat ∧ P̊
next

= ecat
next

∧ S
next

= S + S̊ ∧ S ≤ S
next

∧ E
next

= E + E̊ ∧ E ≤ E
next

∧ C
next

= C+ C̊ ∧ C ≤ C
next

∧ P
next

= P+ P̊ ∧ P ≤ P
next

with
eon = 106 × S × E eoff = 0.2× C ecat = 0.1× C
eon
next

= 106 × S
next

× E
next

eoff
next

= 0.2× C
next

ecat
next

= 0.1× C
next
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Retrieve Boolean transitions from a reaction network
Abstract simulation — Result on Renz

Ron Rcat︷ ︸︸ ︷︷ ︸︸ ︷
E + S

eon
⇄
eoff

C
ecat−−−−→ E + 2× P︸ ︷︷ ︸

Roff
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Outline
1. Preliminaries on reaction networks and Boolean networks

2. My method and its guarantees

SBML2BNET

STEP 1: Retrieve from the input reaction network
Structure: influence graph
Dynamics: Boolean transitions

▶ binarised time series from classic simulation of the ODEs
▶ abstract simulation of the ODEs [Niehren et al., 2022]

STEP 2: BN synthesis with ASK&D-BN [Vaginay et al., 2021]

3. Evaluation of the approach

4. Link to other abstractions

5. Conclusion and perspectives
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SBML2BNET – STEP 2:
Boolean network synthesis with

ASK&D-BN



ASK&D-BN [Vaginay et al., 2021]

Input

Structure
Influence graph
Dynamics
Time series / Boolean time series
List of Boolean transitions

Output

Set of compatible
Boolean networks

1. Local search species-wise synthesis of all the transition functions

compatible with the given influence graph and time series

Generate candidates → Structure constraint → Dynamic
constraint → Minimality constraint

; Answer-Set Programming

2. Global assembly produce all the possible BNs
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ASK&D-BN— Local search
Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

Search space: 23
|S|

non-redundant DNF = non-redundant disjunction

of non-redundant conjunctions

Pick a subset of non-redundant conjunctions

Examples

invalid candidates: valid candidate:
(A ∧ ¬B) ∨ (A ∧ ¬B) ∨ (¬A ∧ ¬C) (A ∧ ¬B) ∨ (¬A ∧ ¬C)

(A ∧ A ∧ ¬B) ∨ (¬A ∧ ¬C)
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ASK&D-BN— Local search
Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

influence graph of the Boolean network ⊆ influence graph of the reaction network

A

B

C

+

+
−

+

+
−

−

Do not select a conjunction that uses a forbidden literal

Example

invalid conjunction: ¬A ∧ ¬C valid conjunction: ¬C ∧ B

A C

−

−

B

C

+

−
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ASK&D-BN— Local search
Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

(1) input: Boolean transitions

Build partial truth tables for each species X: what were the values of its putative
inputs when its value changed? ; Do not assume the underlying update scheme

Compare the truth table of a candidate function to the reconstructed truth table

putative
input

output

C A

0

0 3

1

1 2

BC B

11 0 2

AC C

00 1 1

01 0 2

10 1 3
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(1) input: Boolean transitions

Build partial truth tables for each species X: what were the values of its putative
inputs when its value changed? ; Do not assume the underlying update scheme

Compare the truth table of a candidate function to the reconstructed truth table

input influence graph (unsigned)

A

B

C

putative
input

output

C A

0

0 3

1

1 2

BC B

11 0 2

AC C

00 1 1

01 0 2
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010 −−→
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011 −−→
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3
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ASK&D-BN— Local search
Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

(2) input: time series

Xt : continuous value of X at time t
θ: binarisation threshold for X

U : set of unexplained time steps
E =

∑
t∈U |θ − Xt | To minimise (ideally 0)

1

0

θ

X
t
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ASK&D-BN— Local search
Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

Select candidates with the smallest expressions (subset and/or
cardinal minimal) ⇝ most general conditions

putative input
AB

observed output
X

00
01 0
10 1
11
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ASK&D-BN— Local search
Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

Select candidates with the smallest expressions (subset and/or
cardinal minimal) ⇝ most general conditions

putative input
AB

observed output
X

possible completions

00 0 1 0 1
01 0 0 0 0 0
10 1 1 1 1 1
11 0 0 1 1
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ASK&D-BN— Local search
Generate candidates → Structure constraint → Dynamic constraint → Minimality constraint

Select candidates with the smallest expressions (subset and/or
cardinal minimal) ⇝ most general conditions

putative input
AB

observed output
X

possible completions

00 0 1 0 1
01 0 0 0 0 0
10 1 1 1 1 1
11 0 0 1 1

subset minimal candidates A ∧ ¬B ¬B A A ∨ ¬B
size 2 1 1 2

card. min.
candidates
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ASK&D-BN— Global assembly
Cartesian product of the set of transition functions synthesised for
each species

A B C

f 1
A

f 2
A

f 1
B f 1

C

f 2
C

f 3
C

B1 =

B2 =

B3 =

B4 =

B5 =

B6 =

{
{
{
{
{
{

f 1
A ,

f 1
A ,

f 1
A ,

f 2
A ,

f 2
A ,

f 2
A ,

f 1
B ,

f 1
B ,

f 1
B ,

f 1
B ,

f 1
B ,

f 1
B ,

}f 1
C

f 2
C

f 3
C

f 1
C

f 2
C

f 3
C

}
}
}
}
}
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Evaluation of SBML2BNET

1. The BN synthesis itself [Vaginay et al., 2021]:
ASK&D-BN versus REVEAL1, Best-Fit2 and Caspo-TS3

2. One specific variant of the complete approach on real-world
reaction networks [Vaginay et al., 2021, Vaginay et al., 2022]:
influence graph + time series and midrange binarisation

3. Several variants of the complete approach on Renz:
compare concrete and abstract simulation

1[Liang et al., 1998] 2[Lähdesmäki et al., 2003] 3[Ostrowski et al., 2016]
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ASK&D-BN versus REVEAL, Best-Fit, and Caspo-TS
A. thaliana

5 species, 10 transitions

yeast
4 species, 7 transitions

▶ REVEAL fails

▶ Caspo-TS returns more BNs,
some of them with poor coverage
because of reachability constraint

▶ Best-Fit lacks consistency

▶ ASK&D-BN returns a small number of
BN, with good coverage and low
variance ✓

; Confirmed on > 300 datasets generated from existing BNs from the repository of
PyBoolNet
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Results to real-world reaction networks (from BioModels4)

Input: an extended reaction network rules and events
Output: a set of compatible Boolean networks, according to ASK&D-BN

Setting:

▶ hard structure constraint (extended influence graph)

▶ soft dynamics constraints (time series and midrange binarisation)

▶ mincard DNF

Result:

▶ on 155 reaction networks processed in less than 30 hours

▶ we synthesise perfect Boolean networks for ∼90% of them ✓
139/155 sets of BNs have a coverage proportion median = 1

4[Malik-Sheriff et al., 2020]
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A closer look: Renz
Ron Rcat︷ ︸︸ ︷︷ ︸︸ ︷

E + S
eon
⇄
eoff

C
ecat−−−−→ E + 2× P︸ ︷︷ ︸

Roff

S

E

C

P

−

−

+

−

−
+

−

+

+

+

Setting n°1
▶ influence graph
▶ time series
▶ binarised time series

midrange (0.8) and median (0.6):

fS := ¬E
fE := ¬S
fC := S

fP := C

→ Coverage depends on the
binarisation procedure, BNs miss
some influences

Setting n°2

▶ full graph from abstract
simulation

fS := C ∨ S

fE := E ∨ C

fC := (E ∧ S) ∨ C

fP := C ∨ P

→ Perfect coverage but does not
comply with the influence graph

=⇒ They do not capture the same thing
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Our abstraction versus other abstractions
Reaction-thinking
Reaction network

Boolean network
Influence thinking

[Fages, Soliman, 2008a]
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abstraction

correct
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Conclusion
Automatic synthesis of Boolean networks from a given reaction
network, with guarentees. ✓

▶ Methodology: Boolean networks synthesis from constraints

Structure: Influence graph from syntactic parsing of the reactions
▶ captures all the direct influences among species

Dynamics: Boolean transitions
from numerical simulation of the ODEs + binarisation
▶ good approximation or the analytical solution
▶ but we lose causality

from abstract simulation of the ODEs
▶ correct overapproximation of perfect Euler that captures

causality

▶ Implementation: the SBML2BNET pipeline (+ ASK&D-BN)

▶ Evaluation
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Perspectives

1. Ad hoc solution to facilitate some analyses
Make SBML2BNET easy to use, use more evaluation criteria,
include more knowledge in the synthesis, analyse FO-BNN
themselves (process more RN, compute attractors)

2. Better understanding of the formal relationship between
reaction networks and Boolean network
Two conjectures to investigate, reverse process(*)

3. Improve the Boolean networks synthesis methods when
applied to wet data
Investigate, in a controled environnement
▶ when we can’t fullfill the constraints(*)
▶ overfitting to the sequence of configuration?
▶ impact of the choice of the binarisation procedure and error

measure
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3. Improve the Boolean networks synthesis methods when
applied to wet data
Investigate, in a controled environnement
▶ when we can’t fullfill the constraints(*)
▶ overfitting to the sequence of configuration?
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ASK&D-BN— Local search
Candidate transition function

Search space: 23
|S|

non-redundant DNF = non-redundant disjunction

of non-redundant conjunctions

Pick a subset of non-redundant conjunctions

% GIVEN : conj(ID, Component, Sign}

% conj(ID, Species, Sign}

conj(1, a, 1). conj(1, b,-1). conj(1, c, 0). % A ∧ ¬B
conj(2, a, -1). conj(2, b, 0). conj(2, c, -1). % ¬A ∧ ¬C
conj(3, a, -1). conj(3, b,-1). conj(3, c, -1). % ¬A ∧ ¬B ∧ ¬C
...

1{conjTakenID(0..maxNbPossibleConj)}. % choice rule

Example

conjTakenID(1). conjTakenID(2). ⇒ candidate = (A ∧ ¬B) ∨ (¬A ∧ ¬C)
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ASK&D-BN— Local search
Structure constraints

influence graph of the Boolean network ⊆ influence graph of the reaction network

A

B

C

+

+
−

+

+
−

−

Do not select a conjunction that uses a forbidden literal

ig(ParentID, x, V) :- conjTaken(ConjID, ParentID, V); V!=0.

:- ig(ParentID, x, V) ; not pig(ParentID, x, V).

Example

invalid conjunction: ¬A ∧ ¬C valid conjunction: ¬C ∧ B

A C

−

−

B

C

+

−
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ASK&D-BN— Local search
Dynamics constraints

(1) input: Boolean transitions

Build partial truth tables for each species X: what were the values of its putative
inputs when its value changed? ; Do not assume the underlying update scheme

Compare the truth table of a candidate function to the reconstructed truth table

putative
input

output

C A

0

0 3

1

1 2

BC B

11 0 2

AC C

00 1 1

01 0 2

10 1 3
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ASK&D-BN— Local search
Dynamics constraints

(2) input: time series

#minimize{E@2 : error(E)}. %

Xt : continuous value of X at time t
θ: binarisation threshold for X

U : set of unexplained time steps
E =

∑
t∈U |θ − Xt | To minimise (ideally 0)

1

0

θ

X
t

45 / 38



ASK&D-BN— Local search
Dynamics constraints

(2) input: time series

#minimize{E@2 : error(E)}. %

Xt : continuous value of X at time t
θ: binarisation threshold for X

U : set of unexplained time steps
E =

∑
t∈U |θ − Xt | To minimise (ideally 0)

1

0

θ

X

X̂

t

45 / 38



ASK&D-BN— Local search
Dynamics constraints

(2) input: time series

#minimize{E@2 : error(E)}. %

Xt : continuous value of X at time t
θ: binarisation threshold for X
U : set of unexplained time steps

E =
∑

t∈U |θ − Xt | To minimise (ideally 0)

1

0

θ

X

X̂

t

45 / 38



ASK&D-BN— Local search
Dynamics constraints

(2) input: time series

#minimize{E@2 : error(E)}. %

Xt : continuous value of X at time t
θ: binarisation threshold for X
U : set of unexplained time steps
E =

∑
t∈U |θ − Xt | To minimise (ideally 0)

1

0

θ

X

X̂

t

45 / 38



ASK&D-BN— Local search
Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal)
⇝ most general conditions

sizeconj(C, S):-conjTakenID(C);S=#sum{|V|,N:conj(C, N, V)} .

sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)} .

#minimize{S@1 : sizeDNF(S)}. % Find mincard expressions

% + generate all combinations to find all the subset min expressions

putative input
AB

observed output
X

00
01 0
10 1
11
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% + generate all combinations to find all the subset min expressions

putative input
AB

observed output
X

possible completions

00 0 1 0 1
01 0 0 0 0 0
10 1 1 1 1 1
11 0 0 1 1

subset minimal candidates A ∧ ¬B ¬B A A ∨ ¬B
size 2 1 1 2

card. min.
candidates
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FOBNN fix-points with SAT

Given an FOBNN ϕ with variables V =
⋃

X∈S{X, X̊, X
next

, X̊
next

}, find
the signed assignments α of ϕ such that:

∀X ∈ S : α(X) = α( X
next

) (and no others!)

Hans-Jörg Schurr (univ. Iowa).
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Functional dependency for detecting dynamics conflicts
Set of attributes V (relation scheme)
A set r of tuples that maps each attributes to a value of its domain (t[X ] ∈ dom(X ))

A functional dependency (FD) F is an expression of the form X → Y , where X , Y ⊆ V
F holds in a relation r (r |= f ) if:

∀t1, t2 ∈ r, t1[X ] = t2[X ] =⇒ t1[Y ] = t2[Y ]

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy F ; coverage measure
Simon Vilmin (AMU) and Pierre Faure--Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study
how the complexity of the problems depends on the properties of p (reflexivity, symetry, transitivity, antisymetry)
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how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity,
antisymmetry)
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Functional dependency for detecting dynamics conflicts
Set of variables V = S ∪ S

next
(relation scheme)

A set r of transitions that maps each attributes to a value of its domain (t[X ] ∈ dom(X ) = Bk )

r A B C A
next

B
next

C
next

X ⊆ S
t1 0 0 0 0 0 0  
t2 0 1 1 1 0 0  
t3 0 0 0 0 0 1  

. . .

A functional dependency (FD) is an expression of the form X → Y , where X , Y ⊆ V ; a transition function
f holds in a relation r (r |= f ) if:
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Learn reaction networks from Boolean transitions
Implication base with variables in S: R = {Ri → Pi}i=1...m

Closed-set: “element of P(S) such that we cannot derive anything new using R”
Closure system = the set C of closed-sets of R
C ordered by ⊆ ; a lattice

R = {
R1 :A + B → C + D

R2 :A + C → D

R3 :B + D → C

}

ABCD

ACD BCD

AD CD CB

A D C B

∅

1111

1011 0111

1001 0011 0110

1000 0001 0010 0100

0000

given a closure system, find the implication base(s)
?
=

given Boolean transitions, find the reaction network(s)

Simon Vilmin (AMU), Löıc Paulevé? (LABRI)
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Not well-formed reaction networks

X
k×Y−−−→

∂X
∂Y ̸= 0 captured by the syntactic influence graph.
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Impact of SBML inconsistencies on structure extraction

Ex. BIOMD n°44: 1 BN generated; coverage=0.55
some kinetics use components not listed in the reactants nor
modifiers → incomplete SIG (missing parents)

A + B
f (A,B,E)−−−−−→ C

A

B

C

E

−

−

+

−

−
+

?

?

?

?

> 60% of SBML models from Biomodels are not “well-formed”5,
but some can be fixed → add a step in the pipeline

5[Fages et al. 2012]
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