Synthesis of Boolean Networks from the Structure and Dynamics of Reaction Networks

Athénaïs Vaginay

14th November 2023

My curriculum

- 2011-2012: medical studies
- 2012-2015: bachelor biology
- 2015-2017: master bioinformatics

Univ. Diderot, Paris

- 2018: engineer bioinformatics CRIStAL, Lille machine learning for gene expression analysis
- 2018-2023: PhD Loria / Cran / Univ. Lorraine, Nancy Synthesis of Boolean networks from the structure and dynamics of reaction networks
Taha Boukhobza \& Malika Smaïl-Tabbonne
- beginning 2024: visiting univ. Iowa, US

Systems Biology

Formal modelling and reasoning about biological systems
A set of species of interest genes, proteins, cells, animals. . .

Questions

How does the system evolve?
Is the population of some cell type stable over time?

How to control the system?
Cure a pathological system Produce more of some species of interest

The workflow of system biology [Kohl et al., 2010]

The workflow of system biology [Kohl et al., 2010]

The workflow of system biology [Kohl et al., 2010]

The workflow of system biology [Kohl et al., 2010]

Definition (Model)
Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).

The workflow of system biology [Kohl et al., 2010]

Definition (Model)
Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).

The workflow of system biology [Kohl et al., 2010]

Definition (Model)
Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).

The workflow of system biology [Kohl et al., 2010]

Definition (Model)
Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).

The workflow of system biology [Kohl et al., 2010]

Definition (Model)
Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).

A dichotomic zoo of modelling approaches

Hybrid system

Bayesian network

Constraint based model

Agent-based model

Reaction network
Boolean network

Cellular automata

Principles shared across modelling approaches

Principles shared across modelling approaches

Use the simplest model that contains enough information to answer the question at hand. [Bornholdt, 2005]

Principles shared across modelling approaches

	Synthesis		encodes our knowledge, cannot be exact
from available knowledge and data about the structure and the dynamics	various analyses simulation, control		
parameter fitting task find models that optimise some criteria			

Use the simplest model that contains enough information to answer the question at hand. [Bornholdt, 2005] Boolean networks are simpler than reaction networks.

Principles shared across modelling approaches

- from available knowledge and data about the structure and the dynamics
- parameter fitting task
find models that optimise
some criteria
- encodes our knowledge, cannot be exact
- various analyses simulation, control

Use the simplest model that contains enough information to answer the question at hand. [Bornholdt, 2005]
Boolean networks are simpler than reaction networks.
Problem statement
Automatic transformation (abstraction) of reaction networks to Boolean networks

From reactions to Boolean influences with guarantees

Why?

From reactions to Boolean influences with guarantees

Why?

From reactions to Boolean influences with guarantees

Why?

1. Use BNs to facilitate some analyses

From reactions to Boolean influences with guarantees

Why?

1. Use BNs to facilitate some analyses
2. Explore the formal relationship between RN and BN

From reactions to Boolean influences with guarantees

Why?

1. Use BNs to facilitate some analyses
2. Explore the formal relationship between RN and BN
3. Improve the BN synthesis methods

Outline

1. Preliminaries on reaction networks and Boolean networks
2. My method and its guarantees
3. Evaluation of the approach
4. Link to other abstractions
5. Conclusion and perspectives

Outline

1. Preliminaries on reaction networks and Boolean networks
2. My method and its guarantees
3. Evaluation of the approach
4. Link to other abstractions
5. Conclusion and perspectives

Preliminaries

Reaction networks, structure and dynamics

$\mathcal{R}=\left\{\mathcal{R}_{i}: R_{i} \xrightarrow{e_{i}} P_{i}\right\}_{i=1 \ldots m}$
reaction, reactants, products, kinetics

Example

$$
\begin{gathered}
\mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
\mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \xrightarrow{e_{1}} 2 \times \mathrm{C} \\
\mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \xrightarrow{e_{2}} \mathrm{~A}+\mathrm{B}
\end{gathered}
$$

Reaction networks, structure and dynamics

$$
\mathcal{R}=\left\{\mathcal{R}_{i}: R_{i} \xrightarrow{e_{i}} P_{i}\right\}_{i=1 \ldots m}
$$

reaction, reactants, products, kinetics

Example

$$
\begin{gathered}
\mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
\mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \xrightarrow{e_{1}} 2 \times \mathrm{C} \\
\mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \xrightarrow{e_{2}} \mathrm{~A}+\mathrm{B}
\end{gathered}
$$

Reaction networks, structure and dynamics

$\mathcal{R}=\left\{\mathcal{R}_{i}: R_{i} \xrightarrow{e_{i}} P_{i}\right\}_{i=1 \ldots m}$ reaction, reactants, products, kinetics

Example

$$
\begin{gathered}
\mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
\mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \xrightarrow{e_{1}} 2 \times \mathrm{C} \\
\mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \xrightarrow{e_{2}} \mathrm{~A}+\mathrm{B}
\end{gathered}
$$

Reaction networks, structure and dynamics

$\mathcal{R}=\left\{\mathcal{R}_{i}: R_{i} \xrightarrow{e_{i}} P_{i}\right\}_{i=1 \ldots m}$
reaction, reactants, products, kinetics

Example

$$
\begin{gathered}
\mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
\mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \xrightarrow{e_{1}} 2 \times \mathrm{C} \\
\mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \xrightarrow{e_{2}} \mathrm{~A}+\mathrm{B}
\end{gathered}
$$

Reaction networks, structure and dynamics

$\mathcal{R}=\left\{\mathcal{R}_{i}: R_{i} \xrightarrow{e_{i}} P_{i}\right\}_{i=1 \ldots m}$
reaction, reactants, products, kinetics

Example

$$
\begin{gathered}
\mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
\mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \xrightarrow{e_{1}} 2 \times \mathrm{C} \\
\mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \xrightarrow{e_{2}} \mathrm{~A}+\mathrm{B}
\end{gathered}
$$

Reaction networks, structure and dynamics

$\mathcal{R}=\left\{\mathcal{R}_{i}: R_{i} \xrightarrow{e_{i}} P_{i}\right\}_{i=1 \ldots m}$
reaction, reactants, products, kinetics

Reaction graph
$(\mathcal{S} \cup \mathcal{R}, E \subseteq(\mathcal{S} \times \mathcal{R}) \cup(\mathcal{R} \times \mathcal{S}))$

Example

$$
\begin{gathered}
\mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
\mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \xrightarrow{e_{1}} 2 \times \mathrm{C} \\
\mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \xrightarrow{e_{2}} \mathrm{~A}+\mathrm{B}
\end{gathered}
$$

Reaction networks, structure and dynamics

$\mathcal{R}=\left\{\mathcal{R}_{i}: R_{i} \xrightarrow{e_{i}} P_{i}\right\}_{i=1 \ldots m}$
reaction, reactants, products, kinetics

Reaction graph
$(\mathcal{S} \cup \mathcal{R}, E \subseteq(\mathcal{S} \times \mathcal{R}) \cup(\mathcal{R} \times \mathcal{S}))$

Differential semantics ordinary differential equation (ODE) $\left\{\dot{\mathrm{X}}=\sum_{i \in 1 \ldots m} e_{i} \times\left(P_{i}(\mathrm{X})-R_{i}(\mathrm{X})\right)\right\}_{\mathrm{x} \in \mathcal{S}}$

Example

$$
\begin{gathered}
\mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
\mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \xrightarrow{e_{1}} 2 \times \mathrm{C} \\
\mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \xrightarrow{e_{2}} \mathrm{~A}+\mathrm{B}
\end{gathered}
$$

$$
\left\{\begin{array}{l}
\dot{\mathrm{A}}=-1 \times e_{1} \\
\dot{\mathrm{~B}}=-1 \times e_{1}+1 \times e_{2} \\
\dot{\mathrm{C}}=2 \times e_{1}+(-1) \times e_{2}
\end{array}\right.
$$

Boolean network, structure and dynamics

Example

$$
\begin{aligned}
& \mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
& f_{\mathrm{A}}:=0 \\
& f_{\mathrm{B}}:=(\mathrm{B} \wedge \neg \mathrm{C}) \vee(\neg \mathrm{B} \wedge \mathrm{C}) \\
& f_{\mathrm{C}}:=\neg \mathrm{C}
\end{aligned}
$$

Boolean network, structure and dynamics

Example
One transition function per species in \mathcal{S} :

$$
\left\{f_{x}: \mathbb{B}^{|\mathcal{S}|} \rightarrow \mathbb{B}\right\}_{X \in \mathcal{S}} \quad \mathbb{B}=\{0,1\}
$$

$$
\begin{aligned}
& \mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
& f_{\mathrm{A}}:=0 \\
& f_{\mathrm{B}}:=(\mathrm{B} \wedge \neg \mathrm{C}) \vee(\neg \mathrm{B} \wedge \mathrm{C}) \\
& f_{\mathrm{C}}:=\neg \mathrm{C}
\end{aligned}
$$

Influence graph
$I G=\left(\mathcal{S}, E \subseteq \mathcal{S} \times \mathcal{S}, \sigma: E \rightarrow\left\{+,-,{ }_{-}\right\}\right)$

Boolean network, structure and dynamics

One transition function per species in \mathcal{S} : $\left\{f_{x}: \mathbb{B}^{|\mathcal{S}|} \rightarrow \mathbb{B}\right\}_{X \in \mathcal{S}} \quad \mathbb{B}=\{0,1\}$

$$
\begin{aligned}
& \mathcal{S}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
& f_{\mathrm{A}}:=0 \\
& f_{\mathrm{B}}:=(\mathrm{B} \wedge \neg \mathrm{C}) \vee(\neg \mathrm{B} \wedge \mathrm{C}) \\
& f_{\mathrm{C}}:=\neg \mathrm{C}
\end{aligned}
$$

Influence graph
$I G=(\mathcal{S}, E \subseteq \mathcal{S} \times \mathcal{S}, \sigma: E \rightarrow\{+,-,+\})$

Transition graph (TG)
$\left(\mathbb{B}^{|\mathcal{S}|}, E \subseteq \mathbb{B}^{|\mathcal{S}|} \times \mathbb{B}^{\mid \mathcal{S |}}\right)$
general asynchronous update scheme:
$\mathcal{P}(\mathcal{S}) \backslash \emptyset$

From RN to BN with guarantees

Which ones?

Structure guaranty: conserve direct influences among species

IG of input RN \supseteq IG of output BN

Dynamics guaranty: recover the Boolean transitions

Boolean transitions from input $\mathrm{RN} \subseteq$ gen. async. TG of output BN

$$
\begin{gathered}
\left\{\dot{\mathrm{X}}=\sum_{i \in 1 \ldots m} e_{i} \times\left(R_{i}(\mathrm{X})-P_{i}(\mathrm{X})\right)\right\}_{\mathrm{X} \in \mathcal{S}} \\
010 \rightarrow 011 \rightarrow 111 \rightarrow 110
\end{gathered}
$$

From RN to BN with guarantees

Which ones?

Structure guaranty: conserve direct influences among species

IG of input RN \supseteq IG of output BN

Dynamics guaranty: recover the Boolean transitions

Boolean transitions from input $\mathrm{RN} \subseteq$ gen. async. TG of output BN

$$
\begin{gathered}
\left\{\dot{\mathrm{X}}=\sum_{i \in 1 \ldots m} e_{i} \times\left(R_{i}(\mathrm{X})-P_{i}(\mathrm{X})\right)\right\}_{\mathrm{X} \in \mathcal{S}} \\
010 \rightarrow 011 \rightarrow 111 \rightarrow 110
\end{gathered}
$$

From RN to BN with guarantees

Which ones?
Structure guaranty: conserve direct influences among species
IG of input RN \supseteq IG of output BN

Dynamics guaranty: recover the Boolean transitions
Boolean transitions from input $\mathrm{RN} \subseteq$ gen. async. TG of output BN

$$
\begin{gathered}
\left\{\dot{\mathrm{X}}=\sum_{i \in 1 \ldots m} e_{i} \times\left(R_{i}(\mathrm{X})-P_{i}(\mathrm{X})\right)\right\}_{\mathrm{X} \in \mathcal{S}} \\
010 \rightarrow 011 \rightarrow 111 \rightarrow 110
\end{gathered}
$$

Coverage: proportion of recovered transitions (ideally 100\%)

Outline

1. Preliminaries on reaction networks and Boolean networks
2. My method and its guarantees

SBML2BNET

STEP 1: Retrieve from the input reaction network
Structure: influence graph Dynamics: Boolean transitions

- binarised time series from classic simulation of the ODEs
- abstract simulation of the ODEs [Niehren et al., 2022]

STEP 2: BN synthesis with ASK\&D-BN [Vaginay et al., 2021]
3. Evaluation of the approach
4. Link to other abstractions
5. Conclusion and perspectives

SBML2BNET - STEP 1: ve an influence graph and Boolean transitions

Running example $\boldsymbol{\mathcal { R }}_{\text {enz }}$

Its ODEs (reconstructed)

$$
\left\{\begin{array}{l}
\dot{\mathrm{S}}=-e_{\mathrm{on}}+e_{\mathrm{off}} \\
\dot{\mathrm{E}}=-e_{\mathrm{on}}+e_{\mathrm{off}}+e_{\mathrm{cat}} \\
\dot{\mathrm{C}}=e_{\mathrm{on}}-e_{\mathrm{off}}+e_{\mathrm{cat}} \\
\dot{\mathrm{P}}=2 \times e_{\mathrm{cat}}
\end{array}\right.
$$

$$
\begin{array}{r}
e_{\text {on }}=10^{6} \times \mathrm{E} \times \mathrm{S} \\
e_{\text {off }}=0.2 \times \mathrm{C} \\
e_{\mathrm{cat}}=0.1 \times \mathrm{C}
\end{array}
$$

Its parameters (given)

Retrieve the influence graph of a reaction network

Contribution
Implement the routines from [Fages, Soliman, 2008b] "If Y is a reactant and X disapears: $Y \xrightarrow{\rightarrow} X^{\prime \prime}$

Guarantees
Overapproximates the possible signs of $\frac{\partial X}{\partial Y}$
\rightarrow capture all the direct influences between the species

Influence graph of $\boldsymbol{\mathcal { R }}_{\text {enz }}$

Retrieve Boolean transitions from a reaction network

Numerical simulation and binarisation
Contribution
Guarantees
Use dedicated tools for simulation
Apply binarisation procedure

For $\boldsymbol{\mathcal { R }}_{\text {enz }}$:

Expected transitions: $1100 \rightarrow * * 10 \rightarrow * * * 1$

Binarisation	Boolean configuration sequence SECP
Midrange	$1100 \rightarrow 1000 \rightarrow 1010 \rightarrow 0010 \rightarrow 0011 \rightarrow 0101$
Median	$1100 \rightarrow 1010 \rightarrow 0011 \rightarrow 0101$
Mean	$1100 \rightarrow 1010 \rightarrow 1000 \rightarrow 0011 \rightarrow 0101$
Above 0	$1100 \rightarrow 1111 \rightarrow 1011 \rightarrow 1111 \rightarrow 0111$

Retrieve Boolean transitions from a reaction network

Numerical simulation and binarisation
Contribution
Guarantees
Use dedicated tools for simulation
Apply binarisation procedure

For $\boldsymbol{\mathcal { R }}_{\text {enz }}$:

Expected transitions: $1100 \rightarrow * * 10 \rightarrow * * * 1$

Binarisation	Boolean configuration sequence SECP
Midrange	$1100 \rightarrow 1000 \rightarrow 1010 \rightarrow 0010 \rightarrow 0011 \rightarrow 0101$
Median	$1100 \rightarrow 1010 \rightarrow 0011 \rightarrow 0101$
Mean	$1100 \rightarrow 1010 \rightarrow 1000 \rightarrow 0011 \rightarrow 0101$
Above 0	$1100 \rightarrow 1111 \rightarrow 1011 \rightarrow 1111 \rightarrow 0111$

Retrieve Boolean transitions from a reaction network

Numerical simulation and binarisation
Contribution
Guarantees
Use dedicated tools for simulation
Apply binarisation procedure

For $\boldsymbol{\mathcal { R }}_{\text {enz }}$:

Expected transitions: $1100 \rightarrow * * 10 \rightarrow * * * 1$

Binarisation	Boolean configuration sequence SECP
Midrange	$1100 \rightarrow 1000 \rightarrow 1010 \rightarrow 0010 \rightarrow 0011 \rightarrow 0101$
Median	$1100 \rightarrow 1010 \rightarrow 0011 \rightarrow 0101$
Mean	$1100 \rightarrow 1010 \rightarrow 1000 \rightarrow 0011 \rightarrow 0101$
Above 0	$1100 \rightarrow 1111 \rightarrow 1011 \rightarrow 1111 \rightarrow 0111$

Retrieve Boolean transitions from a reaction network

Numerical simulation and binarisation
Contribution
Guarantees
Use dedicated tools for simulation
Apply binarisation procedure

For $\boldsymbol{\mathcal { R }}_{\text {enz }}$:

Expected transitions: $1100 \rightarrow * * 10 \rightarrow * * * 1$

Binarisation	Boolean configuration sequence SECP
Midrange	$1100 \rightarrow 1000 \rightarrow 1010 \rightarrow 0010 \rightarrow 0011 \rightarrow 0101$
Median	$1100 \rightarrow 1010 \rightarrow 0011 \rightarrow 0101$
Mean	$1100 \rightarrow 1010 \rightarrow 1000 \rightarrow 0011 \rightarrow 0101$
Above 0	$1100 \rightarrow 1111 \rightarrow 1011 \rightarrow 1111 \rightarrow 0111$

Retrieve Boolean transitions from a reaction network

Abstract simulation - Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values (species amount and derivatives) of the ODE system

Retrieve Boolean transitions from a reaction network

Abstract simulation - Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values (species amount and derivatives) of the ODE system

$$
\mathrm{X} \bigcirc \underset{\text { next }}{\mathrm{X}} \longrightarrow \dot{\mathrm{X}}
$$

Retrieve Boolean transitions from a reaction network

Abstract simulation - Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values (species amount and derivatives) of the ODE system

Retrieve Boolean transitions from a reaction network

Abstract simulation - Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values (species amount and derivatives) of the ODE system

Retrieve Boolean transitions from a reaction network

Abstract simulation - Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values (species amount and derivatives) of the ODE system

Retrieve Boolean transitions from a reaction network

Abstract simulation - Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values (species amount and derivatives) of the ODE system

Retrieve Boolean transitions from a reaction network

Abstract simulation - Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values (species amount and derivatives) of the ODE system

X was above 0 and its derivative was negative plus - plus $=$ unknown \sim nondeterminism

Retrieve Boolean transitions from a reaction network

Abstract simulation - Intuition
Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($\mathbb{S}=\{-1,0,1\}$) of the variables values (species amount and derivatives) of the ODE system

Impossible!
X was above 0 and its derivative was negative plus - plus $=$ unknown \leadsto nondeterminism

Retrieve Boolean transitions from a reaction network

 Abstract simulation - In practice$$
\mathcal{V}=\bigcup_{x \in \mathcal{S}}\{x, \dot{x}, \underset{\text { next }}{x}, \underset{\text { next }}{\dot{x}}\}
$$

- Causal relationships encoded by a first-order logic formula ϕ
- Solve ϕ on the structure of signs $\mathbb{S}=\{-1,0,1\}$
- Restrict the solutions on $\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$
\rightsquigarrow relation $\mathbb{B}^{|\mathcal{S}|} \times \mathbb{B}^{\left|{ }_{n} \mathcal{S}^{\mathcal{S} x}\right|}$
- Keep the causalities of changes
- Proof of correctness: overapproximation of an ideal Euler simulation (perfectly adjusted time step and no computation error)

Retrieve Boolean transitions from a reaction network
Abstract simulation - Example on $\boldsymbol{\mathcal { R }}_{\text {enz }}$

$$
\begin{aligned}
& \text { S̊ }=-e_{\text {on }}+e_{\text {off }} \\
& \wedge \dot{E}=-e_{\text {on }}+e_{\text {off }}+e_{\text {cat }} \\
& \wedge \stackrel{\circ}{C}=e_{\text {on }}-e_{\text {off }}-e_{\text {cat }} \\
& \wedge \dot{P}=\quad e_{\text {cat }} \\
& \wedge \underset{\text { next }}{S}=S+S \wedge S_{\text {© }}^{S} \underset{\text { next }}{S} \\
& \wedge \underset{\text { next }}{E}=E+E \subset E^{E} \leq \underset{\text { next }}{E} \\
& \wedge \underset{\text { next }}{C}=C+C \wedge C \leq \underset{\text { next }}{C} \\
& \wedge \underset{\text { next }}{P}=P+P \wedge P \leq \underset{\text { next }}{P}
\end{aligned}
$$

Retrieve Boolean transitions from a reaction network

 Abstract simulation - Result on $\mathcal{R}_{\text {enz }}$

Outline

1. Preliminaries on reaction networks and Boolean networks
2. My method and its guarantees

SBML2BNET

STEP 1: Retrieve from the input reaction network
Structure: influence graph Dynamics: Boolean transitions

- binarised time series from classic simulation of the ODEs
- abstract simulation of the ODEs [Niehren et al., 2022]

STEP 2: BN synthesis with ASK\&D-BN [Vaginay et al., 2021]
3. Evaluation of the approach
4. Link to other abstractions
5. Conclusion and perspectives

SBML2BNET - STTEP 2:
 Boolean network synthesis with ASK\&D-BN

ASK\&D-BN [Vaginay et al., 2021]

Input

Structure

Influence graph
Dynamics
Time series / Boolean time series
List of Boolean transitions

Set of compatible Boolean networks

ASK\&D-BN [Vaginay et al., 2021]

Input

Structure

Influence graph
Dynamics
Time series / Boolean time series
List of Boolean transitions

Set of compatible

 Boolean networks1. Local search species-wise synthesis of all the transition functions compatible with the given influence graph and time series

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint
$~$ Answer-Set Programming

ASK\&D-BN [Vaginay et al., 2021]

Structure

Influence graph
Dynamics
Time series / Boolean time series
List of Boolean transitions

Set of compatible

 Boolean networks1. Local search species-wise synthesis of all the transition functions compatible with the given influence graph and time series

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint
\leadsto Answer-Set Programming
2. Global assembly produce all the possible BNs

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Search space: $2^{3^{|\mathcal{S}|}}$ non-redundant $\mathrm{DNF}=$ non-redundant disjunction of non-redundant conjunctions

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Search space: $2^{3^{|\mathcal{S}|}}$ non-redundant $D N F=$ non-redundant disjunction of non-redundant conjunctions

Pick a subset of non-redundant conjunctions

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Search space: $2^{3^{|\mathcal{S}|}}$ non-redundant DNF $=$ non-redundant disjunction of non-redundant conjunctions

Pick a subset of non-redundant conjunctions

Examples
invalid candidates:
valid candidate:

$$
\begin{aligned}
& (\mathrm{A} \wedge \neg \mathrm{~B}) \vee(\mathrm{A} \wedge \neg \mathrm{~B}) \vee(\neg \mathrm{A} \wedge \neg \mathrm{C}) \quad(\mathrm{A} \wedge \neg \mathrm{~B}) \vee(\neg \mathrm{A} \wedge \neg \mathrm{C}) \\
& \quad(\mathrm{A} \wedge \mathrm{~A} \wedge \neg \mathrm{~B}) \vee(\neg \mathrm{A} \wedge \neg \mathrm{C})
\end{aligned}
$$

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint
influence graph of the Boolean network \subseteq influence graph of the reaction network

Do not select a conjunction that uses a forbidden literal

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint (1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

```
putative
    input
```


ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme
Compare the truth table of a candidate function to the reconstructed truth table

input influence graph (unsigned)

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

$010 \underset{(1)}{\longrightarrow} 011 \underset{(2)}{\longrightarrow} 001$

AC C

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

$010 \underset{(1)}{C} 011 \xrightarrow[(2)]{A, B, C} 100 \xrightarrow[(3)]{A, C} 001$

AC C

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table
$010 \underset{(1)}{\mathrm{C}} 011 \underset{(2}{\mathrm{A}, \mathrm{B}, \mathrm{C}} 100 \underset{(3}{\mathrm{A}, \mathrm{C}} 001$

putative input	output	
C	A	
0	0	3
1	1	2
BC	B	
AC	C	

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

$$
010 \underset{(1)}{C} 011 \underset{(2}{A, B, C} 100 \xrightarrow[(3]{A, C} 001
$$

putative input	output	
C	A	
0	0	3
1	1	2
BC	B	
11	0	2
AC	C	
00	1	1
01	0	2
10	1	3

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(2) input: time series

X_{t} : continuous value of X at time t θ : binarisation threshold for X

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(2) input: time series

X_{t} : continuous value of X at time t θ : binarisation threshold for X

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(2) input: time series

X_{t} : continuous value of X at time t
θ : binarisation threshold for X
\mathcal{U} : set of unexplained time steps

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint
(2) input: time series
X_{t} : continuous value of X at time t
θ : binarisation threshold for X
\mathcal{U} : set of unexplained time steps
$E=\sum_{t \in \mathcal{U}}\left|\theta-X_{t}\right| \quad$ To minimise (ideally 0)

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Select candidates with the smallest expressions (subset and/or

 cardinal minimal) \rightsquigarrow most general conditions| putative input | observed output |
| :---: | :---: |
| AB | X |
| 00 | 0 |
| 01 | 1 |
| 10 | |

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal) \rightsquigarrow most general conditions

putative input	observed output	possible completions			
AB	X				
00		0	1	0	1
01	0	0	0	0	0
10	1	1	1	1	1
11		0	0	1	1

ASK\&D-BN— Local search

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal) \rightsquigarrow most general conditions

putative input observed output$A B$		possible completions			
00		0	1	0	1
01	0	0	0	0	0
10	1	1	1	1	1
11		0	0	1	1
subset minimal candidates		$\mathrm{A} \wedge \neg \mathrm{B}$	$\neg \mathrm{B}$	A	$A \vee \neg B$
size		2	1	1	2
			ard. ndid		

ASK\&D-BN— Global assembly

Cartesian product of the set of transition functions synthesised for each species

$$
\begin{aligned}
& \mathcal{B}_{1}=\left\{f_{A}^{1}, f_{B}^{1}, f_{C}^{1}\right\} \\
& \mathcal{B}_{2}=\left\{f_{A}^{1}, f_{B}^{1}, f_{C}^{2}\right\} \\
& \mathcal{B}_{3}=\left\{f_{A}^{1}, f_{B}^{1}, f_{C}^{3}\right\} \\
& \mathcal{B}_{4}=\left\{f_{A}^{2}, f_{\mathrm{B}}^{1}, f_{C}^{1}\right\} \\
& \mathcal{B}_{5}=\left\{f_{A}^{2}, f_{B}^{1}, f_{C}^{2}\right\} \\
& \mathcal{B}_{6}=\left\{f_{A}^{2}, f_{B}^{1}, f_{C}^{3}\right\}
\end{aligned}
$$

Outline

1. Preliminaries on reaction networks and Boolean networks
2. My method and its guarantees
3. Evaluation of the approach
4. Link to other abstractions
5. Conclusion and perspectives

Evaluation of the approach

Evaluation of SBML2BNET

1. The BN synthesis itself [Vaginay et al., 2021]:

ASK\&D-BN versus REVEAL ${ }^{1}$, Best-Fit ${ }^{2}$ and Caspo-TS ${ }^{3}$
2. One specific variant of the complete approach on real-world reaction networks [Vaginay et al., 2021, Vaginay et al., 2022]: influence graph + time series and midrange binarisation
3. Several variants of the complete approach on $\boldsymbol{\mathcal { R }}_{\text {enz }}$: compare concrete and abstract simulation
${ }^{1}$ [Liang et al., 1998] ${ }^{2}$ [Lähdesmäki et al., 2003] ${ }^{3}$ [Ostrowski et al., 2016]

ASK\&D-BN versus REVEAL, Best-Fit, and Caspo-TS
A. thaliana

5 species, 10 transitions

yeast
4 species, 7 transitions

ASK\&D-BN versus REVEAL, Best-Fit, and Caspo-TS
A. thaliana

5 species, 10 transitions

yeast
4 species, 7 transitions

- REVEAL fails

ASK\&D-BN versus REVEAL, Best-Fit, and Caspo-TS
A. thaliana

5 species, 10 transitions

- REVEAL fails

4 species, 7 transitions

- Best-Fit lacks consistency

ASK\&D-BN versus REVEAL, Best-Fit, and Caspo-TS

A. thaliana

5 species, 10 transitions

- REVEAL fails
- Caspo-TS returns more BNs, some of them with poor coverage because of reachability constraint

- Best-Fit lacks consistency

ASK\&D-BN versus REVEAL, Best-Fit, and Caspo-TS

A. thaliana

5 species, 10 transitions

- REVEAL fails
- Caspo-TS returns more BNs, some of them with poor coverage because of reachability constraint

- Best-Fit lacks consistency
- ASK\&D-BN returns a small number of BN, with good coverage and low variance \checkmark

ASK\&D-BN versus REVEAL, Best-Fit, and Caspo-TS

A. thaliana

5 species, 10 transitions

- REVEAL fails
- Caspo-TS returns more BNs, some of them with poor coverage because of reachability constraint
yeast
4 species, 7 transitions

- Best-Fit lacks consistency
- ASK\&D-BN returns a small number of BN, with good coverage and low variance \checkmark
$~$ Confirmed on >300 datasets generated from existing BNs from the repository of PyBoolNet

Results to real-world reaction networks (from BioModels ${ }^{4}$)

Input: an extended reaction network rules and events
Output: a set of compatible Boolean networks, according to ASK\&D-BN

Setting:

- hard structure constraint (extended influence graph)
- soft dynamics constraints (time series and midrange binarisation)
- mincard DNF

Result:

- on 155 reaction networks processed in less than 30 hours
- we synthesise perfect Boolean networks for $\sim 90 \%$ of them \checkmark $139 / 155$ sets of BNs have a coverage proportion median $=1$

[^0]
A closer look: $\boldsymbol{\mathcal { R }}_{\text {enz }}$

Setting $n^{\circ} 1$

- influence graph
- time series
- binarised time series midrange (0.8) and median (0.6):

$$
\begin{aligned}
f_{\mathrm{S}} & :=\neg \mathrm{E} \\
f_{\mathrm{E}} & :=\neg \mathrm{S} \\
f_{\mathrm{C}} & :=\mathrm{S} \\
f_{\mathrm{P}} & :=\mathrm{C}
\end{aligned}
$$

\rightarrow Coverage depends on the binarisation procedure, BNs miss some influences

- full graph from abstract simulation

$$
\begin{aligned}
& f_{\mathrm{S}}:=\mathrm{C} \vee \mathrm{~S} \\
& f_{\mathrm{E}}:=\mathrm{E} \vee \mathrm{C} \\
& f_{\mathrm{C}}:=(\mathrm{E} \wedge \mathrm{~S}) \vee \mathrm{C} \\
& f_{\mathrm{P}}:=\mathrm{C} \vee \mathrm{P}
\end{aligned}
$$

\rightarrow Perfect coverage but does not comply with the influence graph

Outline

1. Preliminaries on reaction networks and Boolean networks
2. My method and its guarantees
3. Evaluation of the approach
4. Link to other abstractions
5. Conclusion and perspectives

Relation to other abstractions

Our abstraction versus other abstractions
 Reaction-thinking
 Reaction network

Boolean network
Influence thinking

Our abstraction versus other abstractions
 Reaction-thinking
 Reaction network

differential

Boolean network
Influence thinking

Our abstraction versus other abstractions
Reaction-thinking Reaction network differential Approximation

Boolean network
Influence thinking

Our abstraction versus other abstractions
Reaction-thinking Reaction network

Our abstraction versus other abstractions
Reaction-thinking Reaction network

Our abstraction versus other abstractions
Reaction-thinking Reaction network

Boolean

Boolean network
Influence thinking
[Fages, Soliman, 2008a]

Our abstraction versus other abstractions
Reaction-thinking Reaction network
[Fages, Soliman, 2008a]

Our abstraction versus other abstractions
Reaction-thinking
Reaction network

Outline

1. Preliminaries on reaction networks and Boolean networks
2. My method and its guarantees
3. Evaluation of the approach
4. Link to other abstractions
5. Conclusion and perspectives

Conclusion and perspectives

Conclusion

Automatic synthesis of Boolean networks from a given reaction network, with guarentees. \checkmark

Conclusion

Automatic synthesis of Boolean networks from a given reaction network, with guarentees. \checkmark

- Methodology: Boolean networks synthesis from constraints Structure: Influence graph from syntactic parsing of the reactions
- captures all the direct influences among species

Dynamics: Boolean transitions from numerical simulation of the ODEs + binarisation

- good approximation or the analytical solution
- but we lose causality
from abstract simulation of the ODEs
- correct overapproximation of perfect Euler that captures causality

Conclusion

Automatic synthesis of Boolean networks from a given reaction network, with guarentees. \checkmark

- Methodology: Boolean networks synthesis from constraints Structure: Influence graph from syntactic parsing of the reactions
- captures all the direct influences among species

Dynamics: Boolean transitions from numerical simulation of the ODEs + binarisation

- good approximation or the analytical solution
- but we lose causality
from abstract simulation of the ODEs
- correct overapproximation of perfect Euler that captures causality
- Implementation: the SBML2BNET pipeline (+ ASK\&D-BN)

Conclusion

Automatic synthesis of Boolean networks from a given reaction network, with guarentees. \checkmark

- Methodology: Boolean networks synthesis from constraints Structure: Influence graph from syntactic parsing of the reactions
- captures all the direct influences among species

Dynamics: Boolean transitions from numerical simulation of the ODEs + binarisation

- good approximation or the analytical solution
- but we lose causality
from abstract simulation of the ODEs
- correct overapproximation of perfect Euler that captures causality
- Implementation: the SBML2BNET pipeline (+ ASK\&D-BN)
- Evaluation

Perspectives

1. Ad hoc solution to facilitate some analyses Make SBML2BNET easy to use, use more evaluation criteria, include more knowledge in the synthesis, analyse FO-BNN themselves (process more RN, compute attractors)
2. Better understanding of the formal relationship between reaction networks and Boolean network Two conjectures to investigate, reverse process(*)
3. Improve the Boolean networks synthesis methods when applied to wet data Investigate, in a controled environnement

- when we can't fullfill the constraints(*)
- overfitting to the sequence of configuration?
- impact of the choice of the binarisation procedure and error measure

Perspectives

1. Ad hoc solution to facilitate some analyses Make SBML2BNET easy to use, use more evaluation criteria, include more knowledge in the synthesis, analyse FO-BNN themselves (process more RN, compute attractors)
2. Better understanding of the formal relationship between reaction networks and Boolean network Two conjectures to investigate, reverse process(*)
3. Improve the Boolean networks synthesis methods when applied to wet data Investigate, in a controled environnement

- when we can't fullfill the constraints(*)
- overfitting to the sequence of configuration?
- impact of the choice of the binarisation procedure and error measure

Publications

[^1]
Thank you for your attention.

References I

- [Bornholdt, 2005]
S. Bornholdt

Less Is More in Modeling Large Genetic Networks, 2005

- [Fages, Soliman, 2008a]
F. Fages, S. Soliman,

Abstract Interpretation and Types for Systems Biology,
Theoretical Computer Science, vol. 403, pp. 52-70, 2008

- [Fages, Soliman, 2008b]
F. Fages, S. Soliman,

From Reaction Models to Influence Graphs and Back: A Theorem,
Lecture Notes in Computer Science, pp. 90-102 2008

- [Hoops et al., 2006]
S. Hoops et al.

COPASI-a COmplex PAthway SImulator,
Bioinformatics, vol. 22, pp. 3067-3074 2006

References II

- [Kohl et al., 2010]
P. Kohl et al.

Systems Biology: An Approach,
Clinical Pharmacology \& Therapeutics vol. 88-1 pp. 25-33 2010,

- [Lähdesmäki et al., 2003]
H. Lähdesmäki et al.

On Learning Gene Regulatory Networks under the Boolean Network Model, Machine Learning, vol. 52-1 pp. 147-167 2003,

- [Liang et al., 1998]
S. Liang et al.

REVEAL, a General Reverse Engineering Algorithm for Inference of Genetic
Network Architectures
Pacific Symposium on Biocomputing. pp. 18-29, 1998,

- [Malik-Sheriff et al., 2020]
R. Malik-Sheriff et al.

BioModels-15 Years of Sharing Computational Models in Life Science
Nucleic Acids Research vol. 48-D1, pp. D407-D415, 2020

References III

- [Niehren et al., 2022]
J. Niehren et al.

Abstract Simulation of Reaction Networks via Boolean Networks
CMSB: International Conference on Computational Methods in Systems
Biology 2022,

- [Ostrowski et al., 2016]
M. Ostrowski et al.

Boolean Network Identification from Perturbation Time Series Data Combining Dynamics Abstraction and Logic Programming
Biosystems vol. $=149$, pp. 139-153, 2016

- [Vaginay et al., 2021]
A. Vaginay, et al.

Automatic Synthesis of Boolean Networks from Biological Knowledge and Data
Communications in Computer and Information Science pp. 156-170, 2021

References IV

- [Vaginay et al., 2021]
A. Vaginay, et al.

From Quantitative SBML Models to Boolean Networks Complex Networks \& Their Applications X 2021

- [Vaginay et al., 2022]
A. Vaginay, et al.

From Quantitative SBML Models to Boolean Networks
Applied Network Science vol. 7-1 pp. 1-23, 2022

ASK\&D-BN— Local search

Candidate transition function
Search space: $2^{3^{|\mathcal{S}|}}$ non-redundant $\mathrm{DNF}=$ non-redundant disjunction
of non-redundant conjunctions

ASK\&D-BN— Local search

Candidate transition function
Search space: $2^{3^{|S|}}$ non-redundant $\mathrm{DNF}=$ non-redundant disjunction of non-redundant conjunctions

Pick a subset of non-redundant conjunctions

```
% GIVEN : conj(ID, Component, Sign}
%conj(ID, Species, Sign}
conj(1, a, 1). conj(1, b,-1). conj(1, c, 0).% A^\negB
conj(2, a, -1). conj(2, b, 0). conj(2, c, -1).% \negA^\negC
conj(3, a, -1).conj(3, b,-1).conj(3, c, -1).% \negA^\negB\wedge\negC
```

1\{conjTakenID(0..maxNbPossibleConj)\}. \% choice rule

ASK\&D-BN— Local search

Candidate transition function
Search space: $2^{3^{|S|}}$ non-redundant DNF $=$ non-redundant disjunction of non-redundant conjunctions
—— Pick a subset of non-redundant conjunctions

```
% GIVEN : conj(ID, Component, Sign}
% conj(ID, Species, Sign}
conj(1, a, 1). conj(1, b,-1). conj(1, c, 0).% A ^ . . . B
conj(2, a, -1). conj(2, b, 0). conj(2, c, -1). % \negA^\negC
conj(3, a, -1). conj(3, b, -1). conj(3, c, -1).% \negA\wedge\negB\wedge (3C
```

1\{conjTakenID(0..maxNbPossibleConj)\}. \% choice rule

Example

```
conjTakenID(1). conjTakenID(2). }=>\mathrm{ candidate =(A^ ( 
```


ASK\&D-BN- Local search

Structure constraints

influence graph of the Boolean network \subseteq influence graph of the reaction network

__ Do not select a conjunction that uses a forbidden literal __

```
ig(ParentID, x, V) :- conjTaken(ConjID, ParentID, V); V!=0.
:- ig(ParentID, x, V) ; not pig(ParentID, x, V).
```

invalid conjunction: $\neg \mathrm{A} \wedge \neg \mathrm{C}$

valid conjunction: $\neg C \wedge B$

ASK\&D-BN— Local search

Dynamics constraints

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme
Compare the truth table of a candidate function to the reconstructed truth table

```
putative
    input
```


ASK\&D-BN— Local search

Dynamics constraints

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

input influence graph (unsigned)

ASK\&D-BN— Local search

Dynamics constraints

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

$010 \underset{(1)}{\longrightarrow} 011 \underset{(2)}{\longrightarrow} 001$
$B C \quad B$

AC C

ASK\&D-BN— Local search

Dynamics constraints

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

$010 \underset{(1)}{\mathrm{C}} 011 \xrightarrow[(2)]{A, B, C} 100 \xrightarrow[(3)]{\mathrm{A}, \mathrm{C}} 001$

AC
C

ASK\&D-BN— Local search

Dynamics constraints

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

ASK\&D-BN— Local search

Dynamics constraints

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme
Compare the truth table of a candidate function to the reconstructed truth table

ASK\&D-BN— Local search

Dynamics constraints

(1) input: Boolean transitions

Build partial truth tables for each species X : what were the values of its putative inputs when its value changed? \sim Do not assume the underlying update scheme
Compare the truth table of a candidate function to the reconstructed truth table

$$
010 \underset{(1)}{C} 011 \xrightarrow[(2]{A, B, C} 100 \xrightarrow[(3)]{A, C} 001
$$

putative input	output	
C	A	
0	0	3
1	1	2
BC	B	
11	0	2
AC	C	
00	1	1
01	0	2
10	1	3

ASK\&D-BN— Local search

Dynamics constraints

(2) input: time series

\#minimize\{E@2 : error(E)\}. \%
X_{t} : continuous value of X at time t
θ : binarisation threshold for X

ASK\&D-BN— Local search

Dynamics constraints

(2) input: time series

\#minimize\{E@2 : error(E)\}. \%
X_{t} : continuous value of X at time t
θ : binarisation threshold for X

ASK\&D-BN— Local search

Dynamics constraints

(2) input: time series

\#minimize\{E@2 : error(E)\}. \%
X_{t} : continuous value of X at time t
θ : binarisation threshold for X
\mathcal{U} : set of unexplained time steps

ASK\&D-BN— Local search

Dynamics constraints

(2) input: time series

\#minimize\{E@2 : error(E)\}. \%
X_{t} : continuous value of X at time t
θ : binarisation threshold for X
\mathcal{U} : set of unexplained time steps
$E=\sum_{t \in \mathcal{U}}\left|\theta-X_{t}\right| \quad$ To minimise (ideally 0)

ASK\&D-BN- Local search

Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal)
\rightsquigarrow most general conditions

```
sizeconj(C, S):-conjTakenID(C);S=#sum{IV|,N:conj(C, N, V)} .
sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)} .
#minimize{S@1 : sizeDNF(S)}. % Find mincard expressions
% + generate all combinations to find all the subset min expressions
```

putative input observed output
AB X
00
$\begin{array}{ll}01 & 0 \\ 10 & 1\end{array}$
11

ASK\&D-BN— Local search

Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal)
\rightsquigarrow most general conditions

```
sizeconj(C, S):-conjTakenID(C);S=#sum{IV|,N:conj(C, N, V)} .
sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)} .
#minimize{S@1 : sizeDNF(S)}. % Find mincard expressions
% + generate all combinations to find all the subset min expressions
```

putative input observed output possible completions
AB X

00		0	1	0	1
01	0	0	0	0	0
10	1	1	1	1	1
11		0	0	1	1

ASK\&D-BN— Local search

Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal)
\rightsquigarrow most general conditions

```
sizeconj(C, S):-conjTakenID(C);S=#sum{|V|,N:conj(C, N, V)} .
sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)} .
#minimize{S@1 : sizeDNF(S)}. % Find mincard expressions
% + generate all combinations to find all the subset min expressions
```


FOBNN fix-points with SAT

Given an FOBNN ϕ with variables $\mathcal{V}=\bigcup_{\mathrm{X} \in \mathcal{S}}\{\mathrm{X}, \stackrel{\circ}{\mathrm{X}}, \underset{\text { next }}{\mathrm{X}}, \underset{\text { next }}{\underset{\mathrm{X}}{ }}\}$, find the signed assignments α of ϕ such that:

$$
\forall \mathbf{X} \in \mathcal{S}: \alpha(\mathbf{X})=\alpha(\underset{\text { next }}{X}) \text { (and no others!) }
$$

Hans-Jörg Schurr (univ. lowa).

Functional dependency for detecting dynamics conflicts

Set of attributes \mathcal{V} (relation scheme)
A set r of tuples that maps each attributes to a value of its domain $(t[X] \in \operatorname{dom}(X))$

A functional dependency (FD) F is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V}$ F holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.
g3-error: minimal proportion of tuples to remove from r to satisfy $F \sim$ coverage measure
Simon Vilmin (AMU) and Pierre Faure--Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symetry, transitivity, antisymetry)

Functional dependency for detecting dynamics conflicts

Set of attributes \mathcal{V} (relation scheme)
A set r of tuples that maps each attributes to a value of its domain $(t[X] \in \operatorname{dom}(X))$

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V}$ f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.
g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Simon Vilmin (AMU) and Pierre Faure--Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of tuples that maps each attributes to a value of its domain $(t[X] \in \operatorname{dom}(X))$

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V}$
f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.
g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Simon Vilmin (AMU) and Pierre Faure--Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V}$
f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.
g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Simon Vilmin (AMU) and Pierre Faure--Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

r	A	B	C	$\underset{\text { next }}{\mathrm{A}}$	$\underset{\text { next }}{\mathrm{B}}$	$\underset{\text { next }}{\mathrm{C}}$	$X \subseteq \mathcal{S}$
t_{1}	0	0	0	0	0	0	\bullet
t_{2}	0	1	1	1	0	0	\bullet
t_{3}	0	0	0	0	0	1	\bullet

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V}$
f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.
g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Simon Vilmin (AMU) and Pierre Faure--Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

r	A	B	C	$\underset{\text { next }}{\mathrm{A}}$	$\underset{\text { next }}{\mathrm{B}}$	$\underset{\text { next }}{\mathrm{C}}$	$X \subseteq \mathcal{S}$
t_{1}	0	0	0	0	0	0	\bullet
t_{2}	0	1	1	1	0	0	\bullet
t_{3}	0	0	0	0	0	1	\bullet

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.
g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Simon Vilmin (AMU) and Pierre Faure--Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

r	A	B	C	$\underset{\text { next }}{\mathrm{A}}$	$\underset{\text { next }}{\mathrm{B}}$	$\underset{\text { next }}{\mathrm{C}}$	$X \subseteq \mathcal{S}$
t_{1}	0	0	0	0	0	0	\bullet
t_{2}	0	1	1	1	0	0	\bullet
t_{3}	0	0	0	0	0	1	\bullet

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.
g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Simon Vilmin (AMU) and Pierre Faure--Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

r	A	B	C	$\underset{\text { next }}{\mathrm{A}}$	$\underset{\text { next }}{\mathrm{B}}$	$\underset{\text { next }}{\mathrm{C}}$	$X \subseteq \mathcal{S}$
t_{1}	0	0	0	0	0	0	\bullet
t_{2}	0	1	1	1	0	0	\bullet
t_{3}	0	0	0	0	0	1	\bullet

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \leadsto$ coverage measure

Simon Vilmin (AMU) and Pierre Faure--Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

r	A	B	C	$\underset{\text { next }}{\mathrm{A}}$	$\underset{\text { next }}{\mathrm{B}}$	$\underset{\text { next }}{\mathrm{C}}$	$X \subseteq \mathcal{S}$
t_{1}	0	0	0	0	0	0	\bullet
t_{2}	0	1	1	1	0	0	\bullet
t_{3}	0	0	0	0	0	1	\bullet

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Simon Vilmin (AMU) and Pierre Faure--Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

r	A	B	C	$\underset{\text { next }}{\mathrm{A}}$	$\underset{\text { next }}{\mathrm{B}}$	$\underset{\text { next }}{\mathrm{C}}$	$X \subseteq \mathcal{S}$
t_{1}	0	0	0	0	0	0	\bullet
t_{2}	0	1	1	1	0	0	\bullet
t_{3}	0	0	0	0	0	1	\bullet

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \leadsto$ coverage measure

Simon Vilmin (AMU) and Pierre Faure--Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

r	A	B	C	$\underset{\text { next }}{\mathrm{A}}$	$\underset{\text { next }}{\mathrm{B}}$	$\underset{\text { next }}{\mathrm{C}}$	$X \subseteq \mathcal{S}$
t_{1}	0	0	0	0	0	0	\bullet
t_{2}	0	1	1	1	0	0	\bullet
t_{3}	0	0	0	0	0	1	\bullet

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \leadsto$ coverage measure

Simon Vilmin (AMU) and Pierre Faure--Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V}=\mathcal{S} \cup \underset{\text { next }}{\mathcal{S}}$ (relation scheme)
A set r of transitions that maps each attributes to a value of its domain $\left(t[X] \in \operatorname{dom}(X)=\mathbb{B}^{k}\right)$

r	A	B	C	$\underset{\text { next }}{\mathrm{A}}$	$\underset{\text { next }}{\mathrm{B}}$	$\underset{\text { next }}{\mathrm{C}}$	$X \subseteq \mathcal{S}$
t_{1}	0	0	0	0	0	0	\bullet
t_{2}	0	1	1	1	0	0	\bullet
t_{3}	0	0	0	0	0	1	\bullet

A functional dependency (FD) is an expression of the form $X \rightarrow Y$, where $X, Y \subseteq \mathcal{V} \sim$ a transition function f holds in a relation $r(r \models f)$ if:

$$
\forall t_{1}, t_{2} \in r, t_{1}[X]=t_{2}[X] \Longrightarrow t_{1}[Y]=t_{2}[Y]
$$

Find counterexamples when it does not hold (work on the conflict-graph).
Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \leadsto$ coverage measure

Simon Vilmin (AMU) and Pierre Faure--Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Learn reaction networks from Boolean transitions

Implication base with variables in $\mathcal{S}: \mathcal{R}=\left\{R_{i} \rightarrow P_{i}\right\}_{i=1 \ldots m}$
Closed-set: "element of $\mathcal{P}(\mathcal{S})$ such that we cannot derive anything new using \mathcal{R} "
Closure system $=$ the set \mathcal{C} of closed-sets of \mathcal{R}
\mathcal{C} ordered by $\subseteq \sim$ a lattice

$$
\begin{aligned}
& \mathcal{R}=\{ \\
& \mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D} \\
& \mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \rightarrow \mathrm{D} \\
& \mathcal{R}_{3}: \mathrm{B}+\mathrm{D} \rightarrow \mathrm{C} \\
& \quad\}
\end{aligned}
$$

Simon Vilmin (AMU), Loïc Paulevé? (LABRI)

Learn reaction networks from Boolean transitions

Reaction network with species in $\mathcal{S}: \mathcal{R}=\left\{R_{i} \rightarrow P_{i}\right\}_{i=1 \ldots m}$
Closed-set: "element of $\mathcal{P}(\mathcal{S})$ such that we cannot derive anything new using \mathcal{R} "
Closure system $=$ the set \mathcal{C} of closed-sets of \mathcal{R}
\mathcal{C} ordered by $\subseteq \sim$ a lattice

$$
\begin{aligned}
& \mathcal{R}=\{ \\
& \mathcal{R}_{1}: \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D} \\
& \mathcal{R}_{2}: \mathrm{A}+\mathrm{C} \rightarrow \mathrm{D} \\
& \mathcal{R}_{3}: \mathrm{B}+\mathrm{D} \rightarrow \mathrm{C} \\
& \quad\}
\end{aligned}
$$

given a closure system, find the implication base(s) $\stackrel{?}{=}$
given Boolean transitions, find the reaction network(s)

Not well-formed reaction networks

$$
X \xrightarrow{k \times Y_{1}} \text { - }
$$

$\frac{\partial \mathrm{X}}{\partial \mathrm{Y}} \neq 0$ captured by the syntactic influence graph.

Impact of SBML inconsistencies on structure extraction

Ex. BIOMD n ${ }^{\circ}$ 44: 1 BN generated; coverage $=0.55$
some kinetics use components not listed in the reactants nor modifiers \rightarrow incomplete SIG (missing parents)

$$
\mathrm{A}+\mathrm{B} \xrightarrow{f(\mathrm{~A}, \mathrm{~B}, \mathrm{E})} \mathrm{C}
$$

Impact of SBML inconsistencies on structure extraction

Ex. BIOMD n ${ }^{\circ}$ 44: 1 BN generated; coverage $=0.55$ some kinetics use components not listed in the reactants nor modifiers \rightarrow incomplete SIG (missing parents)

$$
\mathrm{A}+\mathrm{B} \xrightarrow{f(\mathrm{~A}, \mathrm{~B}, \mathrm{E})} \mathrm{C}
$$

$>60 \%$ of SBML models from Biomodels are not "well-formed" 5 , but some can be fixed \rightarrow add a step in the pipeline

[^0]: ${ }^{4}$ [Malik-Sheriff et al., 2020]

[^1]: J. Niehren, C. Lhoussaine and AV. Core SBML and its Formal Semantics CMSB: International Conference on Computational Methods in Systems Biology 2023
 Abstract simu. J. Niehren, AV, and C. Versari. Abstract Simulation of Reaction Networks via Boolean Networks CMSB: International Conference on Computational Methods in Systems Biology 2022
 SBML2BNET AV, T. Boukhobza, and M. Smaïl-Tabbone. From Quantitative SBML Models to Boolean Networks CNA: Complex Networks \& Their Applications X 2022
 SBML2BNET AV, T. Boukhobza, and M. Smaïl-Tabbone. From Quantitative SBML Models to Boolean Networks Applied Network Science 2022
 ASK\&D-BN AV, T. Boukhobza, and M. Smaïl-Tabbone. Automatic Synthesis of Boolean Networks from Biological Knowledge and Data OLA: Optimization and Learning 2021
 A. Hirtz, N. Lebourdais, F. Rech, Y. Bailly, AV, M. Smaïl-Tabbone,
 H. Dubois-Pot-Schneider, and H. Dumond. GPER Agonist G-1 Disrupts Tubulin Dynamics and Potentiates Temozolomide to Impair Glioblastoma Cell Proliferation Cells 2021

