Synthesis of Boolean Networks from the Structure and Dynamics of Reaction Networks

Athénaïs Vaginay

14th November 2023

My curriculum

- 2011–2012: medical studies
- 2012–2015: bachelor biology

Univ. Diderot, Paris

- ► 2015–2017: master bioinformatics
- 2018: engineer bioinformatics CRIStAL, Lille machine learning for gene expression analysis
- 2018–2023: PhD Loria / Cran / Univ. Lorraine, Nancy Synthesis of Boolean networks from the structure and dynamics of reaction networks Taha Boukhobza & Malika Smaïl-Tabbonne
- beginning 2024: visiting univ. lowa, US

Systems Biology

Formal modelling and reasoning about biological systems

A set of species of interest genes, proteins, cells, animals...

Definition (Model)

Definition (Model)

Definition (Model)

Definition (Model)

Definition (Model)

A dichotomic zoo of modelling approaches

Synthesis from available knowledge and data about the structure and the dynamics

 parameter fitting task find models that optimise some criteria

Usage

- encodes our knowledge, cannot be exact
- various analyses simulation, control

- Synthesis
 from available knowledge and data about the structure and the dynamics
- parameter fitting task find models that optimise some criteria

Usage

- encodes our knowledge, cannot be exact
- various analyses simulation, control

Use the simplest model that contains enough information to answer the question at hand. [Bornholdt, 2005]

- Synthesis
 from available knowledge and data about the structure and the dynamics
- parameter fitting task find models that optimise some criteria

Usage

- encodes our knowledge, cannot be exact
- various analyses simulation, control

Use the simplest model that contains enough information to answer the question at hand. [Bornholdt, 2005] Boolean networks are simpler than reaction networks.

- Synthesis
 from available knowledge and data about the structure and the dynamics
- parameter fitting task find models that optimise some criteria

Usage

- encodes our knowledge, cannot be exact
- various analyses simulation, control

Use the simplest model that contains enough information to answer the question at hand. [Bornholdt, 2005] Boolean networks are simpler than reaction networks.

- Problem statement

Automatic transformation (abstraction) of reaction networks to Boolean networks

1. Use BNs to facilitate some analyses

- 1. Use BNs to facilitate some analyses
- 2. Explore the formal relationship between RN and BN

- 1. Use BNs to facilitate some analyses
- 2. Explore the formal relationship between RN and BN
- 3. Improve the BN synthesis methods

Outline

- 1. Preliminaries on reaction networks and Boolean networks
- 2. My method and its guarantees
- 3. Evaluation of the approach
- 4. Link to other abstractions
- 5. Conclusion and perspectives

Outline

1. Preliminaries on reaction networks and Boolean networks

- 2. My method and its guarantees
- 3. Evaluation of the approach
- 4. Link to other abstractions
- 5. Conclusion and perspectives

Preliminaries

$$\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$$

reaction, reactants, products, kinetics

 $\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$ reaction, reactants, products, kinetics

Example $S = \{A, B, C\}$ $\mathcal{R}_1 : A + B \xrightarrow{e_1} 2 \times C$ $\mathcal{R}_2 : A + C \xrightarrow{e_2} A + B$

Reaction graph $(S \cup \mathcal{R}, E \subseteq (S \times \mathcal{R}) \cup (\mathcal{R} \times S))$

 $\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$ reaction, reactants, products, kinetics

Reaction graph $(S \cup \mathcal{R}, E \subseteq (S \times \mathcal{R}) \cup (\mathcal{R} \times S))$

 $\begin{array}{l} \mbox{Differential semantics} \\ \mbox{ordinary differential equation (ODE)} \\ \left\{ \dot{X} = \sum_{i \in 1...m} e_i \times (P_i(X) - R_i(X)) \right\}_{X \in \mathcal{S}} \end{array}$

Preliminaries

Boolean network, structure and dynamics

Boolean network, structure and dynamics

One transition function per species in S: $\{f_X : \mathbb{B}^{|S|} \to \mathbb{B}\}_{X \in S}$ $\mathbb{B} = \{0, 1\}$ $f_A := 0$ $f_B := (B \land \neg C) \lor (\neg B \land C)$ $f_C := \neg C$ Influence graph $IG = (S, E \subseteq S \times S, \sigma : E \to \{+, -, +\})$ (A) = (C) = (C)(A) = (C) = (C)

Boolean network, structure and dynamics

 $\begin{array}{l} \text{One transition function per species in } \mathcal{S}:\\ \left\{ f_X: \mathbb{B}^{|\mathcal{S}|} \to \mathbb{B} \right\}_{X \in \mathcal{S}} \qquad \mathbb{B} = \{0,1\} \end{array}$

$$\mathcal{E} \text{xample} \xrightarrow{\qquad \mathcal{S} = \{A, B, C\}} \\ f_A := 0 \\ f_B := (B \land \neg C) \lor (\neg B \land C) \\ f_C := \neg C \\ (A) \qquad (C) \overline{\varphi}$$

Influence graph $IG = (S, E \subseteq S \times S, \sigma : E \rightarrow \{+, -, \underline{+}\})$

> > 000

100

Transition graph (TG) $(\mathbb{B}^{|S|}, E \subseteq \mathbb{B}^{|S|} \times \mathbb{B}^{|S|})$ general asynchronous update scheme: $\mathcal{P}(S) \setminus \emptyset$

From RN to BN with guarantees Which ones?

From RN to BN with guarantees Which ones?

From RN to BN with guarantees Which ones?

Outline

- 1. Preliminaries on reaction networks and Boolean networks
- 2. My method and its guarantees

- 3. Evaluation of the approach
- 4. Link to other abstractions
- 5. Conclusion and perspectives

SBML2BNET – STEP 1: Retrieve an influence graph and Boolean transitions

Running example \mathcal{R}_{enz}

Its ODEs (reconstructed)

Its parameters (given)

$$\begin{cases} \dot{S} = -e_{\rm on} + e_{\rm off} \\ \dot{E} = -e_{\rm on} + e_{\rm off} + e_{\rm cat} \\ \dot{C} = e_{\rm on} - e_{\rm off} + e_{\rm cat} \\ \dot{P} = 2 \times e_{\rm cat} \end{cases}$$

$$e_{
m on} = 10^6 imes {\sf E} imes {\sf S}$$

 $e_{
m off} = 0.2 imes {\sf C}$
 $e_{
m cat} = 0.1 imes {\sf C}$

SBML2BNET - STEP 1: Retrieve structure and dynamics

13 / 38

Retrieve the influence graph of a reaction network

Contribution Implement the routines from [Fages, Soliman, 2008b]

"If Y is a reactant and X disapears: $Y \xrightarrow{-} X$ "

Guarantees Overapproximates the possible signs of $\frac{\partial X}{\partial Y}$ \rightarrow capture all the direct influences between the species

Influence graph of \mathcal{R}_{enz}

Use dedicated tools for simulation Apply binarisation procedure Guarantees

Approximate the real solution of the ODE with good accuracy [Hoops et al., 2006] but causations are lost

Use dedicated tools for simulation Apply binarisation procedure Guarantees

Approximate the real solution of the ODE with good accuracy [Hoops et al., 2006] but causations are lost

Use dedicated tools for simulation Apply binarisation procedure Guarantees

Approximate the real solution of the ODE with good accuracy [Hoops et al., 2006] but causations are lost

Use dedicated tools for simulation Apply binarisation procedure Guarantees

Approximate the real solution of the ODE with good accuracy [Hoops et al., 2006] but causations are lost

Abstract simulation — Intuition

Abstract simulation — Intuition

$$\bigcirc X \bigcirc X_{next} \longrightarrow X$$

Abstract simulation — Intuition

$$\bigcirc X \bigcirc X_{next} \longrightarrow X$$

Abstract simulation — Intuition

$$\bigcirc X \bigcirc X_{next} \longrightarrow X$$

Abstract simulation — Intuition

$$\bigcirc X \bigcirc X_{next} \longrightarrow X$$

Abstract simulation — Intuition

$$\bigcirc$$
 X \bigcirc X \longrightarrow X \longrightarrow X

Abstract simulation — Intuition

Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022] Use the rule of signs to reason on the causal relationship between the signs ($S = \{-1, 0, 1\}$) of the variables values (species amount and derivatives) of the ODE system

$$\bigcirc X \bigcirc X_{next} \longrightarrow X$$

X was above 0 and its derivative was negative $plus - plus = unknown \rightarrow nondeterminism$

Abstract simulation — Intuition

$$\bigcirc X \bigcirc X_{next} \longrightarrow X$$

Retrieve Boolean transitions from a reaction network Abstract simulation — In practice

 $\mathcal{V} = \bigcup_{\mathbf{X} \in \mathcal{S}} \{ \mathbf{X}, \mathbf{\dot{X}}, \mathbf{X}_{next}, \mathbf{\dot{X}}_{next} \}$

- Causal relationships encoded by a first-order logic formula φ
- Solve ϕ on the structure of signs $\mathbb{S} = \{-1, 0, 1\}$
- ► Restrict the solutions on $S \cup \underset{\text{next}}{S}$ \rightarrow relation $\mathbb{B}^{|S|} \times \mathbb{B}^{|\underset{\text{next}}{S}|}$

 Keep the causalities of changes

Guarantee

 Proof of correctness: overapproximation of an ideal Euler simulation (perfectly adjusted time step and no computation error)

FOBNN: First-Order Boolean networks with nondeterministic updates

Retrieve Boolean transitions from a reaction network Abstract simulation — Example on \mathcal{R}_{enz}

$$\begin{split} \hat{S} &= - e_{on} + e_{off} & \wedge \hat{S} &= - e_{on} + e_{off} \\ & \wedge \hat{E} &= - e_{on} + e_{off} + e_{cat} & \wedge \hat{E} &= - e_{on} + e_{off} + e_{cat} \\ & \wedge \hat{C} &= e_{on} - e_{off} - e_{cat} & \wedge \hat{C} &= e_{on} - e_{off} - e_{cat} \\ & \wedge \hat{P} &= e_{cat} & \wedge \hat{P} &= e_{cat} \\ \end{split}$$

$$\begin{array}{rcl} \wedge & \underset{next}{S} = & S+\mathring{S} & \wedge & S \leq \underset{next}{S} \\ & \wedge & \underset{next}{E} = & E+\mathring{E} & \wedge & E \leq \underset{next}{E} \\ & \wedge & \underset{next}{C} = & C+\mathring{C} & \wedge & C \leq \underset{next}{C} \\ & \wedge & \underset{next}{P} = & P+\mathring{P} & \wedge & P \leq \underset{next}{P} \\ \end{array}$$

SBML2BNET - STEP 1: Retrieve structure and dynamics

18 / 38

Retrieve Boolean transitions from a reaction network Abstract simulation — Result on \mathcal{R}_{enz}

SBML2BNET - STEP 1: Retrieve structure and dynamics

19 / 38

Outline

- 1. Preliminaries on reaction networks and Boolean networks
- 2. My method and its guarantees

- 3. Evaluation of the approach
- 4. Link to other abstractions
- 5. Conclusion and perspectives

SBML2BNET – STEP 2: Boolean network synthesis with ASK&D-BN

ASK&D-BN [Vaginay et al., 2021]

— Input

Structure Influence graph Dynamics

Time series / Boolean time series List of Boolean transitions

Output

Set of *compatible* Boolean networks

ASK&D-BN [Vaginay et al., 2021]

Structure Influence graph **Dynamics** Time series / Boolean time series List of Boolean transitions

Input

Output

Set of *compatible* Boolean networks

1. Local search species-wise synthesis of *all* the transition functions compatible with the given influence graph and time series

```
\begin{array}{l} \mathsf{Generate \ candidates} \to \mathsf{Structure \ constraint} \to \mathsf{Dynamic} \\ \mathsf{constraint} \to \mathsf{Minimality \ constraint} \end{array}
```

\rightsquigarrow Answer-Set Programming

ASK&D-BN [Vaginay et al., 2021]

Structure Influence graph **Dynamics** Time series / Boolean time series List of Boolean transitions

Input

Output

Set of *compatible* Boolean networks

1. Local search species-wise synthesis of *all* the transition functions compatible with the given influence graph and time series

```
\begin{array}{l} \mbox{Generate candidates} \rightarrow \mbox{Structure constraint} \rightarrow \mbox{Dynamic constraint} \rightarrow \mbox{Minimality constraint} \end{array}
```

 \rightsquigarrow Answer-Set Programming

2. Global assembly produce all the possible BNs

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Search space: $2^{3^{|S|}}$ non-redundant DNF = non-redundant disjunction of non-redundant conjunctions

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Search space: $2^{3^{|S|}}$ non-redundant DNF = non-redundant disjunction of non-redundant conjunctions

Pick a subset of non-redundant conjunctions

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Search space: $2^{3^{|S|}}$ non-redundant DNF = non-redundant disjunction of non-redundant conjunctions

Pick a subset of non-redundant conjunctions

SBML2BNET - STEP 2: Boolean network synthesis with ASK&D-BN

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

influence graph of the Boolean network \subseteq influence graph of the reaction network

Do not select a conjunction that uses a forbidden literal

 $\mathsf{Generate\ candidates\ } \rightarrow \mathsf{Structure\ constraint\ } \rightarrow \mathsf{Dynamic\ constraint\ } \rightarrow \mathsf{Minimality\ constraint\ }$

— (1) input: Boolean transitions —

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \rightarrow Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

putative input

 $\mathsf{Generate\ candidates\ } \rightarrow \mathsf{Structure\ constraint\ } \rightarrow \mathsf{Dynamic\ constraint\ } \rightarrow \mathsf{Minimality\ constraint\ }$

— (1) input: Boolean transitions —

		putative input		
	-	C	А	
input influence graph (unsigned) $A^{a} \qquad C P$ C P C P C P	-	BC	В	
<u> </u>	-	AC	С	

 $\mathsf{Generate\ candidates\ } \rightarrow \mathsf{Structure\ constraint\ } \rightarrow \mathsf{Dynamic\ constraint\ } \rightarrow \mathsf{Minimality\ constraint\ }$

— (1) input: Boolean transitions —

	putative input	output
	С	А
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	BC	В
	AC	С

 $\mathsf{Generate\ candidates\ } \rightarrow \mathsf{Structure\ constraint\ } \rightarrow \mathsf{Dynamic\ constraint\ } \rightarrow \mathsf{Minimality\ constraint\ }$

— (1) input: Boolean transitions —

	putative input	t
	C A	
$010 \xrightarrow[]{(1)}{(1)} 011 \xrightarrow[]{A,B,C}{(2)} 100 \xrightarrow[]{A,C}{(3)} 001$		
	BC B	

 $\mathsf{Generate\ candidates\ } \rightarrow \mathsf{Structure\ constraint\ } \rightarrow \mathsf{Dynamic\ constraint\ } \rightarrow \mathsf{Minimality\ constraint\ }$

— (1) input: Boolean transitions —

	putative input	output	
	C	А	
$010 \xrightarrow[1]{C} 011 \xrightarrow[2]{A,B,C} 100 \xrightarrow[3]{A,C} 001$	1	1	2
	BC	В	
	AC	С	

 $\mathsf{Generate\ candidates\ } \rightarrow \mathsf{Structure\ constraint\ } \rightarrow \mathsf{Dynamic\ constraint\ } \rightarrow \mathsf{Minimality\ constraint\ }$

— (1) input: Boolean transitions —

	putative input	output	
$010 \xrightarrow{C} 011 \xrightarrow{A,B,C} 100 \xrightarrow{A,C} 001$	C 0	A 0	3
	1	1	2
$\begin{pmatrix} 1 \end{pmatrix}$ $\begin{pmatrix} 2 \end{pmatrix}$ $\begin{pmatrix} 3 \end{pmatrix}$	BC	В	
	AC	С	

 $\mathsf{Generate\ candidates\ } \rightarrow \mathsf{Structure\ constraint\ } \rightarrow \mathsf{Dynamic\ constraint\ } \rightarrow \mathsf{Minimality\ constraint\ }$

— (1) input: Boolean transitions —

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \rightarrow Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

	putative input	output	
	С	А	
	0	0	(3)
$010 \xrightarrow{C} 011 \xrightarrow{A,B,C} 100 \xrightarrow{A,C} 001$	1	1	2
	BC	В	
	11	0	(2)
	AC	С	
	00	1	(1)
	01	0	2
	10	1	3

SBML2BNET - STEP 2: Boolean network synthesis with ASK&D-BN
Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

t

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(2) input: time series

- X_t : continuous value of X at time t
- θ : binarisation threshold for X
- \mathcal{U} : set of unexplained time steps

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

(2) input: time series X_t : continuous value of X at time t θ : binarisation threshold for X U: set of unexplained time steps $E = \sum_{t \in U} |\theta - X_t|$ To minimise (ideally 0)

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal) \rightsquigarrow most general conditions

putative input	observed output
AB	Х
00	
01	0
10	1
11	

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal) \rightsquigarrow most general conditions

putative input	observed output	possible completions			
AB	Х				
00		0	(1)	0	1
01	0	0	0	0	0
10	1	1	1	1	1
11		0	0	1	1

Generate candidates \rightarrow Structure constraint \rightarrow Dynamic constraint \rightarrow Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal) \rightsquigarrow most general conditions

putative input AB	observed output X	possible completions					
00		0	1	0	1		
01	0	0	0	0	0		
10	1	1	1	1	1		
11		0	0	1	1		
subset m	$A\wedge\negB$	¬B	А	$A \vee \neg B$			
	size	2	1	1	2		
card. min.							

ASK&D-BN-Global assembly

Cartesian product of the set of transition functions synthesised for each species

$$\begin{split} \mathcal{B}_{1} &= \left\{ f_{A}^{1}, f_{B}^{1}, f_{C}^{1} \right\} \\ \mathcal{B}_{2} &= \left\{ f_{A}^{1}, f_{B}^{1}, f_{C}^{2} \right\} \\ \mathcal{B}_{3} &= \left\{ f_{A}^{1}, f_{B}^{1}, f_{C}^{3} \right\} \\ \mathcal{B}_{4} &= \left\{ f_{A}^{2}, f_{B}^{1}, f_{C}^{1} \right\} \\ \mathcal{B}_{5} &= \left\{ f_{A}^{2}, f_{B}^{1}, f_{C}^{2} \right\} \\ \mathcal{B}_{6} &= \left\{ f_{A}^{2}, f_{B}^{1}, f_{C}^{3} \right\} \end{split}$$

SBML2BNET - STEP 2: Boolean network synthesis with ASK&D-BN

Outline

- 1. Preliminaries on reaction networks and Boolean networks
- 2. My method and its guarantees
- 3. Evaluation of the approach
- 4. Link to other abstractions
- 5. Conclusion and perspectives

Evaluation of the approach

Evaluation of SBML2BNET

- The BN synthesis itself [Vaginay et al., 2021]: ASK&D-BN versus REVEAL¹, Best-Fit² and Caspo-TS³
- One specific variant of the complete approach on real-world reaction networks [Vaginay et al., 2021, Vaginay et al., 2022]: influence graph + time series and midrange binarisation
- 3. Several variants of the complete approach on \mathcal{R}_{enz} : compare concrete and abstract simulation

¹[Liang et al., 1998] ²[Lähdesmäki et al., 2003] ³[Ostrowski et al., 2016]

Evaluation of the approach

30 / 38

30 / 38

yeast 4 species, 7 transitions

 Caspo-TS returns more BNs, some of them with poor coverage because of reachability constraint

 Caspo-TS returns more BNs, some of them with poor coverage because of reachability constraint *yeast* 4 species, 7 transitions

- Best-Fit lacks consistency
- ASK&D-BN returns a small number of BN, with good coverage and low variance

 Caspo-TS returns more BNs, some of them with poor coverage because of reachability constraint *yeast* 4 species, 7 transitions

- Best-Fit lacks consistency
- ASK&D-BN returns a small number of BN, with good coverage and low variance √

 \sim Confirmed on > 300 datasets generated from existing BNs from the repository of PyBoolNet

Results to real-world reaction networks (from BioModels⁴)

Input: an extended reaction network rules and events Output: a set of compatible Boolean networks, according to ASK&D-BN

Setting:

- hard structure constraint (extended influence graph)
- soft dynamics constraints (time series and midrange binarisation)
- mincard DNF

Result:

- on 155 reaction networks processed in less than 30 hours
- ▶ we synthesise perfect Boolean networks for ~90% of them ✓ 139/155 sets of BNs have a coverage proportion median = 1

⁴[Malik-Sheriff et al., 2020]

A closer look: \mathcal{R}_{enz}

- Setting n°1

- influence graph
- time series
- binarised time series

midrange (0.8) and median (0.6):

$$\begin{split} f_{\mathsf{S}} &:= \neg \mathsf{E} \\ f_{\mathsf{E}} &:= \neg \mathsf{S} \\ f_{\mathsf{C}} &:= \mathsf{S} \\ f_{\mathsf{P}} &:= \mathsf{C} \end{split}$$

 \rightarrow Coverage depends on the binarisation procedure, BNs miss some influences

Setting n°2

 full graph from abstract simulation

$$\begin{split} f_S &:= C \lor S \\ f_E &:= E \lor C \\ f_C &:= (E \land S) \lor C \\ f_P &:= C \lor P \end{split}$$

 \rightarrow Perfect coverage but does not comply with the influence graph

 \implies They do not capture the same thing

32 / 38

Outline

- 1. Preliminaries on reaction networks and Boolean networks
- 2. My method and its guarantees
- 3. Evaluation of the approach
- 4. Link to other abstractions
- 5. Conclusion and perspectives

Relation to other abstractions

Boolean network Influence thinking

differential

Boolean network Influence thinking

Boolean network Influence thinking

[Fages, Soliman, 2008a]

Relation to other abstractions

34 / 38

Boolean network Influence thinking

[Fages, Soliman, 2008a]

Relation to other abstractions

Relation to other abstractions

34 / 38

Outline

- 1. Preliminaries on reaction networks and Boolean networks
- 2. My method and its guarantees
- 3. Evaluation of the approach
- 4. Link to other abstractions
- 5. Conclusion and perspectives

Conclusion and perspectives

Automatic synthesis of Boolean networks from a given reaction network, with guarentees. \checkmark

Automatic synthesis of Boolean networks from a given reaction network, with guarentees. \checkmark

Methodology: Boolean networks synthesis from constraints
 Structure: Influence graph from syntactic parsing of the reactions

captures all the direct influences among species

Dynamics: Boolean transitions

from numerical simulation of the ODEs + binarisation

- good approximation or the analytical solution
- but we lose causality

from abstract simulation of the ODEs

 correct overapproximation of perfect Euler that captures causality

Automatic synthesis of Boolean networks from a given reaction network, with guarentees. \checkmark

Methodology: Boolean networks synthesis from constraints
 Structure: Influence graph from syntactic parsing of the reactions

captures all the direct influences among species

Dynamics: Boolean transitions

from numerical simulation of the ODEs + binarisation

- good approximation or the analytical solution
- but we lose causality

from abstract simulation of the ODEs

- correct overapproximation of perfect Euler that captures causality
- ▶ Implementation: the SBML2BNET pipeline (+ ASK&D-BN)

Automatic synthesis of Boolean networks from a given reaction network, with guarentees. \checkmark

Methodology: Boolean networks synthesis from constraints
 Structure: Influence graph from syntactic parsing of the reactions

captures all the direct influences among species

Dynamics: Boolean transitions

from numerical simulation of the ODEs + binarisation

- good approximation or the analytical solution
- but we lose causality

from abstract simulation of the ODEs

- correct overapproximation of perfect Euler that captures causality
- ► Implementation: the SBML2BNET pipeline (+ ASK&D-BN)

Evaluation

Perspectives

Ad hoc solution to facilitate some analyses Make SBML2BNET easy to use, use more evaluation criteria, include more knowledge in the synthesis, analyse FO-BNN themselves (process more RN, compute attractors)

 Better understanding of the formal relationship between reaction networks and Boolean network Two conjectures to investigate, reverse process(*)

3. Improve the Boolean networks synthesis methods when applied to wet data

Investigate, in a controled environnement

- when we can't fullfill the constraints(*)
- overfitting to *the* sequence of configuration?
- impact of the choice of the binarisation procedure and error measure
Perspectives

- Ad hoc solution to facilitate some analyses
 Make SBML2BNET easy to use, use more evaluation criteria,
 include more knowledge in the synthesis, analyse FO-BNN
 themselves (process more RN, compute attractors)
- Better understanding of the formal relationship between reaction networks and Boolean network
 Two conjectures to investigate, reverse process(*)
- Improve the Boolean networks synthesis methods when applied to wet data Investigate, in a controled environnement
 - when we can't fullfill the constraints(*)
 - overfitting to *the* sequence of configuration?
 - impact of the choice of the binarisation procedure and error measure

Publications

J. Niehren, C. Lhoussaine and **AV**. *Core SBML and its Formal Semantics* CMSB: International Conference on Computational Methods in Systems Biology 2023

- Abstract simu. J. Niehren, **AV**, and C. Versari. Abstract Simulation of Reaction Networks via Boolean Networks CMSB: International Conference on Computational Methods in Systems Biology 2022
- SBML2BNET AV, T. Boukhobza, and M. Smaïl-Tabbone. From Quantitative SBML Models to Boolean Networks CNA: Complex Networks & Their Applications X 2022
- SBML2BNET AV, T. Boukhobza, and M. Smaïl-Tabbone. From Quantitative SBML Models to Boolean Networks Applied Network Science 2022
 - ASK&D-BN AV, T. Boukhobza, and M. Smaïl-Tabbone. Automatic Synthesis of Boolean Networks from Biological Knowledge and Data OLA: Optimization and Learning 2021

A. Hirtz, N. Lebourdais, F. Rech, Y. Bailly, **AV**, M. Smaïl-Tabbone, H. Dubois-Pot-Schneider, and H. Dumond. *GPER Agonist G-1 Disrupts Tubulin Dynamics and Potentiates Temozolomide to Impair Glioblastoma Cell Proliferation* Cells 2021

Thank you for your attention.

References I

[Bornholdt, 2005]
 S. Bornholdt
 Less Is More in Modeling Large Genetic Networks, 2005

 [Fages, Soliman, 2008a]
 F. Fages, S. Soliman, Abstract Interpretation and Types for Systems Biology, *Theoretical Computer Science*, vol. 403, pp. 52–70, 2008

[Fages, Soliman, 2008b]
 F. Fages, S. Soliman,
 From Reaction Models to Influence Graphs and Back: A Theorem,
 Lecture Notes in Computer Science, pp. 90–102 2008

 [Hoops et al., 2006]
 S. Hoops et al.
 COPASI—a COmplex PAthway SImulator, Bioinformatics, vol. 22, pp. 3067–3074 2006

References II

 [Kohl et al., 2010]
 P. Kohl et al.
 Systems Biology: An Approach, Clinical Pharmacology & Therapeutics vol. 88-1 pp. 25–33 2010,

 [Lähdesmäki et al., 2003]
 H. Lähdesmäki et al.
 On Learning Gene Regulatory Networks under the Boolean Network Model, Machine Learning, vol. 52-1 pp. 147–167 2003,

[Liang et al., 1998]
 S. Liang et al.
 REVEAL, a General Reverse Engineering Algorithm for Inference of Genetic Network Architectures
 Pacific Symposium on Biocomputing. pp. 18–29, 1998,

 [Malik-Sheriff et al., 2020]
 R. Malik-Sheriff et al.
 BioModels—15 Years of Sharing Computational Models in Life Science Nucleic Acids Research vol. 48-D1, pp. D407-D415, 2020

References III

▶ [Niehren et al., 2022]

J. Niehren et al.

Abstract Simulation of Reaction Networks via Boolean Networks CMSB: International Conference on Computational Methods in Systems Biology 2022,

[Ostrowski et al., 2016]

M. Ostrowski et al.

Boolean Network Identification from Perturbation Time Series Data Combining Dynamics Abstraction and Logic Programming *Biosystems* vol. = 149, pp. 139–153, 2016

▶ [Vaginay et al., 2021]

A. Vaginay, et al.

Automatic Synthesis of Boolean Networks from Biological Knowledge and Data

Communications in Computer and Information Science pp. 156-170, 2021

References IV

▶ [Vaginay et al., 2021]

A. Vaginay, et al. From Quantitative SBML Models to Boolean Networks Complex Networks & Their Applications X 2021

[Vaginay et al., 2022]

A. Vaginay, et al. From Quantitative SBML Models to Boolean Networks *Applied Network Science* vol. 7-1 pp. 1–23, 2022

Candidate transition function

Search space: $2^{3^{|S|}}$ non-redundant DNF = non-redundant disjunction of non-redundant conjunctions

Candidate transition function

Search space: $2^{3^{|S|}}$ non-redundant DNF = non-redundant disjunction of non-redundant conjunctions

```
Pick a subset of non-redundant conjunctions 

% GIVEN : conj(ID, Component, Sign}

% conj(ID, Species, Sign}

conj(1, a, 1). conj(1, b,-1). conj(1, c, 0). % A \land \neg B

conj(2, a, -1). conj(2, b, 0). conj(2, c, -1). % \neg A \land \neg C

conj(3, a, -1). conj(3, b,-1). conj(3, c, -1). % \neg A \land \neg B \land \neg C

...

1{conjTakenID(0..maxNbPossibleConj)}. % choice rule
```

Candidate transition function

Search space: $2^{3^{|S|}}$ non-redundant DNF = non-redundant disjunction of non-redundant conjunctions

Structure constraints

influence graph of the Boolean network \subseteq influence graph of the reaction network

Dynamics constraints

- (1) input: Boolean transitions

Build partial truth tables for each species X: what were the values of its putative inputs when its value changed? \rightarrow Do not assume the underlying update scheme Compare the truth table of a candidate function to the reconstructed truth table

putative input output

Dynamics constraints

— (1) input: Boolean transitions

		putative input		
	-	С	А	
input influence graph (unsigned)				
	-	BC	В	
¢B	_			
		AC	С	

Dynamics constraints

— (1) input: Boolean transitions

	putative input	output
	С	А
$010 \xrightarrow[1]{} 011 \xrightarrow[2]{} 100 \xrightarrow[3]{} 001$		
	BC	В
	AC	С

Dynamics constraints

— (1) input: Boolean transitions

	putative input		
	С	A	
$010 \xrightarrow[(1)]{C} 011 \xrightarrow[(2)]{A,B,C} 100 \xrightarrow[(3)]{A,C} 001$			
	BC	В	
	AC	C	

Dynamics constraints

— (1) input: Boolean transitions

	putative input	output	t
	С	А	
$010 \xrightarrow{C} 011 \xrightarrow{A,B,C} 100 \xrightarrow{A,C} 001$	1	1	2
	BC	В	
	AC	С	

Dynamics constraints

— (1) input: Boolean transitions

	putative input	output	
	С 0	A 0	3
$010 \xrightarrow{C} 011 \xrightarrow{A,B,C} 100 \xrightarrow{A,C} 001$	1	1	2
	BC	В	
	AC	С	

Dynamics constraints

— (1) input: Boolean transitions

	putative input	outpu	t
	С	А	
	0	0	(3)
$010 \xrightarrow[]{(1)}{(1)} 011 \xrightarrow[]{A,B,C}{(2)} 100 \xrightarrow[]{A,C}{(3)} 001$	1	1	2
	BC	В	
	11	0	2
-			
	AC	С	
	00	1	(1)
	01	0	2
	10	1	3

Dynamics constraints

Dynamics constraints

Dynamics constraints

Dynamics constraints

(2) input: time series #minimize{E02 : error(E)}. % X_t: continuous value of X at time t θ : binarisation threshold for X U: set of unexplained time steps $E = \sum_{t \in U} |\theta - X_t|$ To minimise (ideally 0)

Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal) \rightsquigarrow most general conditions

```
sizeconj(C, S):-conjTakenID(C);S=#sum{|V|,N:conj(C, N, V)} .
sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)} .
#minimize{S@1 : sizeDNF(S)}. % Find mincard expressions
% + generate all combinations to find all the subset min expressions
```

putative input	observed output
AB	Х
00	
01	0
10	1
11	

Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal) \rightsquigarrow most general conditions

```
sizeconj(C, S):-conjTakenID(C);S=#sum{|V|,N:conj(C, N, V)} .
sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)} .
#minimize{S@1 : sizeDNF(S)}. % Find mincard expressions
% + generate all combinations to find all the subset min expressions
```

putative input	observed output	possible completions			etions
AB	Х				
00		0	1	0	1
01	0	0	0	0	0
10	1	1	1	1	1
11		0	0	(1)	1

Minimality constraint

Select candidates with the smallest expressions (subset and/or cardinal minimal) \rightsquigarrow most general conditions

```
sizeconj(C, S):-conjTakenID(C);S=#sum{|V|,N:conj(C, N, V)} .
sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)} .
#minimize{S@1 : sizeDNF(S)}. % Find mincard expressions
% + generate all combinations to find all the subset min expressions
```

putative input	observed output possible completions						
AB	Х						
00		0	1	0	1		
01	0	0	0	0	0		
10	1	1	1	1	1		
11		0	0	1	1		
subset m	ninimal candidates	$A\wedge\negB$	¬B	А	$A \vee \neg B$		
	size	2	1	1	2		
card. min. candidates							

FOBNN fix-points with SAT

Given an FOBNN ϕ with variables $\mathcal{V} = \bigcup_{X \in \mathcal{S}} \{X, X, X_{next}, X, next\}$, find the signed assignments α of ϕ such that:

 $\forall \mathsf{X} \in \mathcal{S} : \alpha(\mathsf{X}) = \alpha(\underset{\mathrm{next}}{\mathsf{X}}) \text{ (and no others!)}$

Hans-Jörg Schurr (univ. lowa).

Set of attributes \mathcal{V} (relation scheme) A set r of tuples that maps each attributes to a value of its domain $(t[X] \in dom(X))$

A functional dependency (FD) F is an expression of the form $X \to Y$, where $X, Y \subseteq V$ F holds in a relation r ($r \models f$) if:

 $\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $F \sim$ coverage measure

Set of attributes \mathcal{V} (relation scheme) A set r of tuples that maps each attributes to a value of its domain $(t[X] \in dom(X))$

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V}$ f holds in a relation r (r \models f) if:

 $\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \rightarrow$ coverage measure

Set of variables $\mathcal{V} = \tilde{\mathcal{S}} \cup \underset{next,}{\mathcal{S}}$ (relation scheme)

A set r of tuples that maps each attributes to a value of its domain $(t[X] \in dom(X))$

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V}$ f holds in a relation r (r \models f) if:

 $\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}_{\text{next}}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V}$ f holds in a relation r (r \models f) if:

 $\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy f ightarrow coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}_{next}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	С	A	B	$_{\rm next}^{\rm C}$	$X \subseteq S$	
t_1	0	0	0	0	0	0	•	
t_2	0	1	1	1	0	0	•	
t ₃	0	0	0	0	0	1	۲	

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V}$ f holds in a relation r (r \models f) if:

 $\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}_{next}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	С	A	B	$_{\rm next}^{\rm C}$	$X \subseteq S$	
t_1	0	0	0	0	0	0	•	
t_2	0	1	1	1	0	0	•	
t ₃	0	0	0	0	0	1	۲	

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \to a$ transition function f holds in a relation r ($r \models f$) if:

 $\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy f ightarrow coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \mathcal{S}_{next}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	С	A	B	$_{\rm next}^{\rm C}$	$X \subseteq S$	
t_1	0	0	0	0	0	0	•	
t_2	0	1	1	1	0	0	•	
t ₃	0	0	0	0	0	1	۲	

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \to a$ transition function f holds in a relation r ($r \models f$) if:

 $\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy f ightarrow coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \underset{next}{\mathcal{S}}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	С	A	B	C	$X \subseteq S$	
t_1	0	0	0	0	0	0	•	
t_2	0	1	1	1	0	0	•	
t ₃	0	0	0	0	0	1	•	

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \to a$ transition function f holds in a relation r ($r \models f$) if:

 $\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Set of variables $\mathcal{V} = \mathcal{S} \cup \underset{next}{\mathcal{S}}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	С	A	B	C	$X \subseteq S$	
t_1	0	0	0	0	0	0	•	
t_2	0	1	1	1	0	0	•	
t ₃	0	0	0	0	0	1	•	

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \to a$ transition function f holds in a relation r ($r \models f$) if:

 $\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Set of variables $\mathcal{V} = \dot{\mathcal{S}} \cup \overset{\circ}{\underset{next}{\mathcal{S}}}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	С	A	B	C	$X \subseteq S$	
t_1	0	0	0	0	0	0	•	
t_2	0	1	1	1	0	0	•	
t ₃	0	0	0	0	0	1	•	

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \to a$ transition function f holds in a relation r ($r \models f$) if:

 $\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure
Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V} = \mathcal{S} \cup \underset{next}{\mathcal{S}}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	С	A	B	C	$X \subseteq S$				
t_1	0	0	0	0	0	0	•				
t_2	0	1	1	1	0	0	•				
t ₃	0	0	0	0	0	1	•				

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \to a$ transition function f holds in a relation r ($r \models f$) if:

 $\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy $f \sim$ coverage measure

Simon Vilmin (AMU) and Pierre Faure--Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Functional dependency for detecting dynamics conflicts

Set of variables $\mathcal{V} = \mathcal{S} \cup \underset{next}{\mathcal{S}}$ (relation scheme)

A set r of transitions that maps each attributes to a value of its domain $(t[X] \in dom(X) = \mathbb{B}^k)$

r	A	В	С	A	B	C	$X \subseteq S$				
t_1	0	0	0	0	0	0	•				
t_2	0	1	1	1	0	0	•				
t ₃	0	0	0	0	0	1	•				

A functional dependency (FD) is an expression of the form $X \to Y$, where $X, Y \subseteq \mathcal{V} \to a$ transition function f holds in a relation r ($r \models f$) if:

 $\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$

Find counterexamples when it does not hold (work on the conflict-graph). Find the maximum (biggest) independent sets.

g3-error: minimal proportion of tuples to remove from r to satisfy f
ightarrow coverage measure

Simon Vilmin (AMU) and Pierre Faure--Giovagnoli (LIRIS): relax the equality by using a predicate p instead, study how the complexity of the problems depends on the properties of p (reflexivity, symmetry, transitivity, antisymmetry)

Learn reaction networks from Boolean transitions

Implication base with variables in $S: \mathcal{R} = \{R_i \rightarrow P_i\}_{i=1...m}$ Closed-set: "element of $\mathcal{P}(S)$ such that we cannot derive anything new using \mathcal{R} " Closure system = the set C of closed-sets of \mathcal{R} C ordered by $\subseteq \rightarrow$ a lattice

Simon Vilmin (AMU), Loïc Paulevé? (LABRI)

Learn reaction networks from Boolean transitions

Reaction network with species in $S: \mathcal{R} = \{R_i \rightarrow P_i\}_{i=1...m}$ Closed-set: "element of $\mathcal{P}(S)$ such that we cannot derive anything new using \mathcal{R} " Closure system = the set C of closed-sets of \mathcal{R} C ordered by $\subseteq \rightarrow$ a lattice

Simon Vilmin (AMU), Loïc Paulevé? (LABRI)

Not well-formed reaction networks

$X \xrightarrow{k \times Y}$

$\frac{\partial X}{\partial Y} \neq 0$ captured by the syntactic influence graph.

Impact of SBML inconsistencies on structure extraction

Ex. BIOMD n°44: 1 BN generated; coverage=0.55 some kinetics use components not listed in the reactants nor modifiers \rightarrow incomplete SIG (missing parents)

⁵[Fages et al. 2012]

Impact of SBML inconsistencies on structure extraction

Ex. BIOMD n°44: 1 BN generated; coverage=0.55 some kinetics use components not listed in the reactants nor modifiers \rightarrow incomplete SIG (missing parents)

> 60% of SBML models from Biomodels are not "well-formed"⁵, but some can be fixed \rightarrow add a step in the pipeline

⁵[Fages et al. 2012]