Synthesis of Boolean Networks from the Structure and Dynamics of Reaction Networks

Athénaïs Vaginay

7th July 2023

Rapporteurs: François Fages

Loïc Paulevé

Examinateurs:

Thierry Bastogne Anna Niarakis

Encadrants: Taha Boukhobza

Malika Smaïl-Tabbonne

Directeur de recherche, Inria Saclay Chargé de recherche, CNRS Labri

Professeur Université de Lorraine

Maître de Conférences HDR, Université d'Evry

Professeur Université de Lorraine

Maître de Conférences HDR, Université de Lorraine

Systems Biology

Formal modelling and reasoning about biological systems

A set ${\mathcal S}$ of species of interest genes, proteins, cells, animals. . .

Questions

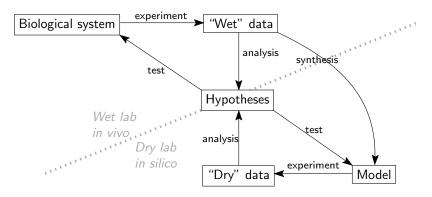
How does the system evolve? Is the population of some cell type

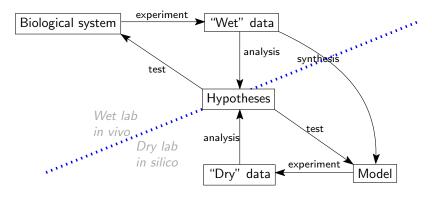
stable over time?

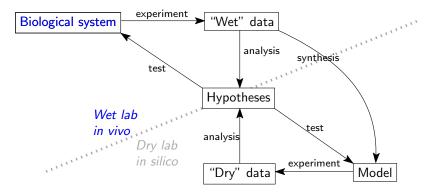
How to control the system?

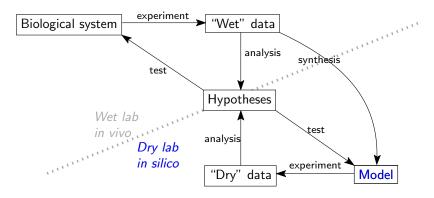
Cure a pathological system Produce more of some species of interest

1 / Introduction



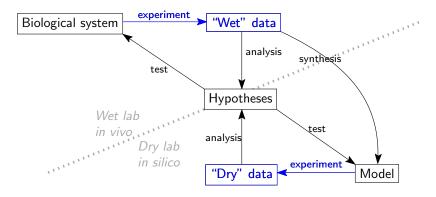






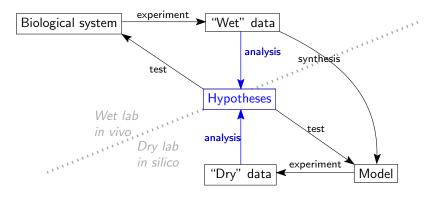
Definition (Model)

Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).



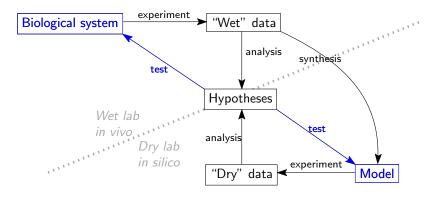
Definition (Model)

Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).



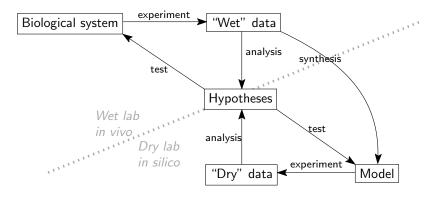
Definition (Model)

Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).



Definition (Model)

Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).



Definition (Model)

Abstract representation (abbreviated and convenient) of the reality (more complex and detailed).

A dichotomic zoo of modelling approaches

Bayesian network

Cellular automata

Constraint based model

Hybrid systems

Petri nets

Process algebras

$$((b(x, de)[E]) || (B(y, dI)[I]))$$

 $bh(x, dE)bh(y, dI)(E || I)$

Agent-based model

Boolean network

Reaction network

$$A + B \rightarrow C$$

 $\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$ reaction, reactants, products, kinetics

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$\mathcal{R}_1:\mathsf{A}+\mathsf{B}\xrightarrow{e_1}2\times\mathsf{C}$$

$$\mathcal{R}_2:\mathsf{A}+\mathsf{C} \xrightarrow{\mathsf{e}_2} \mathsf{A}+\mathsf{B}$$

$$\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$$
 reaction, reactants, products, kinetics

Example

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$\mathcal{R}_1:\mathsf{A}+\mathsf{B}\xrightarrow{e_1}2\times\mathsf{C}$$

$$\mathcal{R}_2:\mathsf{A}+\mathsf{C} \xrightarrow{\mathsf{e}_2} \mathsf{A}+\mathsf{B}$$

Introduction

 $\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$ reaction, reactants, products, kinetics

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$\mathcal{R}_1:\mathsf{A}+\mathsf{B}\xrightarrow{e_1}2\times\mathsf{C}$$

$$\mathcal{R}_2:\mathsf{A}+\mathsf{C} \xrightarrow{\mathsf{e}_2} \mathsf{A}+\mathsf{B}$$

 $\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$ reaction, reactants, products, kinetics

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$\mathcal{R}_1:\mathsf{A}+\mathsf{B}\xrightarrow{e_1}2\times\mathsf{C}$$

$$\mathcal{R}_2:\mathsf{A}+\mathsf{C} \xrightarrow{\mathsf{e}_2} \mathsf{A}+\mathsf{B}$$

 $\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$ reaction, reactants, products, kinetics

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$\mathcal{R}_1:\mathsf{A}+\mathsf{B}\xrightarrow{e_1}2\times\mathsf{C}$$

$$\mathcal{R}_2:\mathsf{A}+\mathsf{C} \xrightarrow{\mathsf{e}_2} \mathsf{A}+\mathsf{B}$$

$$\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$$
 reaction, reactants, products, kinetics

Reaction graph

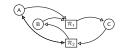
$$G = (\mathcal{S} \cup \mathcal{R}, E \subseteq (\mathcal{S} \times \mathcal{R}) \cup (\mathcal{R} \times \mathcal{S}))$$

Example

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$\mathcal{R}_1:\mathsf{A}+\mathsf{B}\xrightarrow{e_1}2\times\mathsf{C}$$

$$\mathcal{R}_2:\mathsf{A}+\mathsf{C} \xrightarrow{\mathsf{e}_2} \mathsf{A}+\mathsf{B}$$



Introduction

$$\mathcal{R} = \{\mathcal{R}_i : R_i \xrightarrow{e_i} P_i\}_{i=1...m}$$
 reaction, reactants, products, kinetics

Reaction graph

$$G = (S \cup \mathcal{R}, E \subseteq (S \times \mathcal{R}) \cup (\mathcal{R} \times \mathcal{S}))$$

Differential semantics

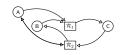
ordinary differential equation (ODE)

$$\left\{\dot{X} = \sum_{i \in 1...m} e_i \times (R_i(X) - P_i(X))\right\}_{X \in \mathcal{S}}$$

Example $S = \{A, B, C\}$

$$\mathcal{R}_1: A + B \xrightarrow{e_1} 2 \times C$$

 $\mathcal{R}_2: A + C \xrightarrow{e_2} A + B$



$$\begin{cases} \dot{A} &= -1 \times e_1 \\ \dot{B} &= -1 \times e_1 + 1 \times e_2 \\ \dot{C} &= 2 \times e_1 + (-1) \times e_2 \end{cases}$$

Introduction

Boolean network, structure and dynamics

One transition function per species in \mathcal{S} : $\left\{f_X:\mathbb{B}^{|\mathcal{S}|} \to \mathbb{B}\right\}_{X \in \mathcal{S}} \qquad \mathbb{B} = \{0,1\}$

Example

$$\mathcal{S} = \{\mathsf{A},\mathsf{B},\mathsf{C}\}$$

$$f_{A} := 0$$

$$f_{\mathsf{B}} := \!\! \left(\mathsf{B} \wedge \neg \mathsf{C} \right) \vee \left(\neg \mathsf{B} \wedge \mathsf{C} \right)$$

$$f_{\mathsf{C}} := \neg \mathsf{C}$$

Boolean network, structure and dynamics

One transition function per species in S: $\{f_{\mathsf{X}}:\mathbb{B}^{|\mathcal{S}|}\to\mathbb{B}\}_{\mathsf{X}\in\mathcal{S}}$

$$\Big\}_{\mathsf{X}\in\mathcal{S}}\qquad \mathbb{B}=\{0,1\}$$

Influence graph

$$\textit{IG} = (\mathcal{S}, E \subseteq \mathcal{S} \times \mathcal{S}, \sigma : E \rightarrow \{+, -, \underline{+}\})$$

$$\mathcal{S} = \{\mathsf{A}, \mathsf{B}, \mathsf{C}\}$$

$$f_A := 0$$

$$\mathit{f}_{B} := \! (\mathsf{B} \wedge \neg \mathsf{C}) \vee (\neg \mathsf{B} \wedge \mathsf{C})$$

$$f_{\mathsf{C}} := \neg \mathsf{C}$$

Boolean network, structure and dynamics

One transition function per species in S: $\{f_{\mathsf{X}}:\mathbb{B}^{|\mathcal{S}|}\to\mathbb{B}\}_{\mathsf{X}\in\mathcal{S}}$ $\mathbb{B} = \{0, 1\}$

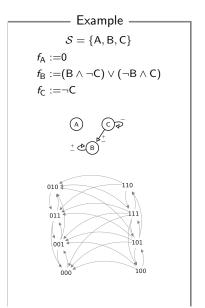
Influence graph

 $IG = (S, E \subseteq S \times S, \sigma : E \rightarrow \{+, -, +\})$

Transition graph

 $TG = (\mathbb{B}^{|\mathcal{S}|}, E \subseteq \mathbb{B}^{|\mathcal{S}|} \times \mathbb{B}^{|\mathcal{S}|})$ general asynchronous update scheme:

 $\mathcal{P}(\mathcal{S})\setminus\emptyset$



Synthesis -

- from available knowledge and data about the structure and the dynamics
- parameter fitting task find models that optimise some criteria

Usage

- various analyses simulation, control
- encodes our knowledge, cannot be exact

Synthesis

- from available knowledge and data about the structure and the dynamics
- parameter fitting task find models that optimise some criteria

Usage

- various analyses simulation, control
- encodes our knowledge, cannot be exact

Use the simplest model that contains enough information to answer the question at hand. [Bornholdt, 2005]

Synthesis •

- from available knowledge and data about the structure and the dynamics
- parameter fitting task find models that optimise some criteria

Usage

- various analyses simulation, control
- encodes our knowledge, cannot be exact

Use the simplest model that contains enough information to answer the question at hand. [Bornholdt, 2005] Boolean networks are simpler than reaction networks.

Synthesis -

- from available knowledge and data about the structure and the dynamics
- parameter fitting task find models that optimise some criteria

Usage -

- various analyses simulation, control
- encodes our knowledge, cannot be exact

Use the simplest model that contains enough information to answer the question at hand. [Bornholdt, 2005] Boolean networks are simpler than reaction networks.

Problem statement

Automatic transformation (abstraction) of reaction networks to Boolean networks

From reactions to Boolean influences

Intuition

- Input — Output

 $\mathcal{R}: \mathsf{S} + \mathsf{E} \xrightarrow{e} \mathsf{E} + 2 \times \mathsf{P}$

 $f_{\mathsf{P}}: \mathbb{B}^k \to \mathbb{B}$

outpu P
0
0
0
1

Introduction

From reactions to Boolean influences

Intuition

———— Input ————	Output —
$\mathcal{R}: S + E \xrightarrow{e} E + 2 \times P$	$f_{P}:\mathbb{B}^k o\mathbb{B}$
	input output ESP 00 0 01 0
	10 0
	11 1

Can we do this automatically? With guarantees?

Introduction 7

From reactions to Boolean influences with guarantees Why?

Because we want to...

- 1. Use our BNs to facilitate some analyses
- 2. Explore the formal relationship between RN and BN
- 3. Improve the BN synthesis methods

From reactions to Boolean influences with guarantees

Which ones?

Input: A reaction network Output: A set of Boolean networks

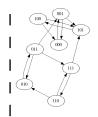
Structure guaranty: conserve direct influences among species

Dynamics guaranty: recover the Boolean transitions

Boolean transitions from input RN \subseteq gen. async. TG of output BN

$$\left\{ \dot{\mathbf{X}} = \sum_{i \in 1...m} e_i \times (R_i(\mathbf{X}) - P_i(\mathbf{X})) \right\}_{\mathbf{X} \in \mathcal{S}}$$

$$010 \implies 011 \implies 111 \implies 110$$



Introduction

From reactions to Boolean influences with guarantees

Which ones?

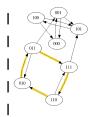
Input: A reaction network Output: A set of Boolean networks

Structure guaranty: conserve direct influences among species

Dynamics guaranty: recover the Boolean transitions

Boolean transitions from input RN \subseteq gen. async. TG of output BN

$$\begin{cases} \dot{X} = \sum_{i \in 1...m} e_i \times (R_i(X) - P_i(X)) \\ 010 \longrightarrow 011 \longrightarrow 111 \longrightarrow 110 \end{cases} X \in S$$



Introduction

From reactions to Boolean influences with guarantees

Which ones?

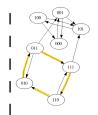
Input: A reaction network Output: A set of Boolean networks

Structure guaranty: conserve direct influences among species

Dynamics guaranty: recover the Boolean transitions

Boolean transitions from input RN \subseteq gen. async. TG of output BN

$$\begin{cases} \dot{X} = \sum_{i \in 1...m} e_i \times (R_i(X) - P_i(X)) \\ 010 \longrightarrow 011 \longrightarrow 111 \longrightarrow 110 \end{cases}_{X \in \mathcal{S}}$$



Coverage: proportion of recovered transitions (ideally 100%)

Outline

1. My method, its implementation and guarantees

SBML2BNET

STEP 1: Retrieve from the input reaction network

Structure: influence graph

Dynamics: Boolean transitions

- binarised time series from classic simulation of the ODEs
- abstract simulation of the ODEs

STEP 2: BN synthesis with ASK&D-BN

- 2. Evaluation of the approach
- 3. Link to other abstractions
- 4. Conclusion and perspectives

Outline

1. My method, its implementation and guarantees

SBML2BNET

STEP 1: Retrieve from the input reaction network

Structure: influence graph

Dynamics: Boolean transitions

- binarised time series from classic simulation of the ODEs
- abstract simulation of the ODEs

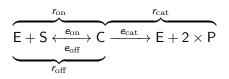
STEP 2: BN synthesis with ASK&D-BN

- 2. Evaluation of the approach
- 3. Link to other abstractions
- 4. Conclusion and perspectives

Retrieve an influence graph and

Boolean transitions

Running example \mathcal{R}_{enz}



Its ODEs

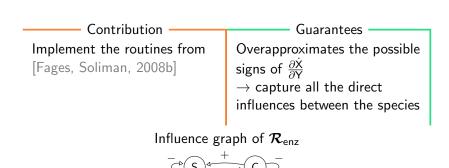
$$\left\{ egin{aligned} \dot{\mathsf{C}} &= (e_{
m on} - e_{
m off}) - e_{
m cat} \ \dot{\mathsf{P}} &= 2 imes e_{
m cat} \ \dot{\mathsf{S}} &= - (e_{
m on} - e_{
m off}) \ \dot{\mathsf{E}} &= - (e_{
m on} - e_{
m off}) + e_{
m cat} \end{aligned}
ight.$$

Its parameters

$$e_{
m on} = 10^6 imes E imes S$$

 $e_{
m off} = 0.2 imes C$
 $e_{
m cat} = 0.1 imes C$

Retrieve the influence graph of a reaction network



Retrieve Boolean transitions from a reaction network Numerical simulation and binarisation

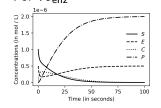
Contribution

Guarantees

Use dedicated tools for simulation Apply binarisation procedure

Approximate the real solution of the ODE with good accuracy [Hoops et al., 2006] but loose causation

For $\mathcal{R}_{\mathsf{enz}}$



	Binarisation Boolean configuration sequence			
	Midrange Median Mean Above 0	$\begin{array}{c} 1100 \rightarrow 1000 \rightarrow 1010 \rightarrow 0010 \rightarrow 0011 \rightarrow 0101 \\ 1100 \rightarrow 1010 \rightarrow 0011 \rightarrow 0101 \\ 1100 \rightarrow 1010 \rightarrow 1000 \rightarrow 0011 \rightarrow 0101 \\ 1100 \rightarrow 1111 \rightarrow 1011 \rightarrow 1111 \rightarrow 0111 \\ \end{array}$		
•	Expected	$1100 \rightarrow **10 \rightarrow ***1$		

Retrieve Boolean transitions from a reaction network Abstract simulation — Intuition

Joint work with Joachim Niehren and Cristian Versari [Niehren et al., 2022]

Use the rule of signs to reason on the causal relationship between the signs of the variables values of the ODE system species amount and derivatives

X is above 0 if...

- it was already above 0 and its derivative was null (no change) plus + 0 = plus
- ▶ it was already above 0 and its derivative was positive (X has increased) plus + plus = plus

If X was above 0 and its derivative was negative (X has decreased) $plus - plus = unknown \rightsquigarrow nondeterminism$

Retrieve Boolean transitions from a reaction network

Abstract simulation — In practice

Contribution

$$\mathcal{V} = \bigcup_{X \in \mathcal{S}} \{X, \mathring{X}, \underset{\mathrm{next}}{X}, \mathring{\underset{\mathrm{next}}{X}}\}$$

Causal relationships encoded by a first-order logic formula ϕ Solve ϕ on the structure of signs $\mathbb{S} = \{-1, 0, 1\}$

Restrict the solutions on $\mathcal{S} \leadsto \text{relation } \mathbb{R}^{|\mathcal{S}|} \times \mathbb{R}^{|\mathcal{S}|}$

FOBNN: First-Order Boolean networks with nondeterministic updates

Guarantee

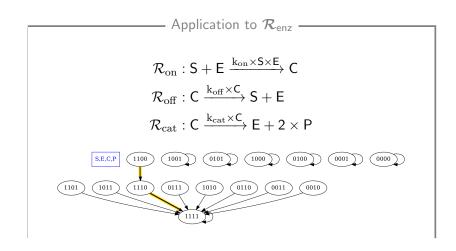
- Keep the causalities of changes
- Proof of correctness: overapproximation of an ideal Euler simulation

Retrieve Boolean transitions from a reaction network

Abstract simulation — Example on \mathcal{R}_{enz}

Retrieve Boolean transitions from a reaction network

Abstract simulation — Result on \mathcal{R}_{enz}



Summary about our guarantees

Structure: Influence graph

from syntactic parsing of the reactions

captures all the direct influences among species

Dynamics: Boolean transitions

from numerical simulation of the ODEs + binarisation

- good approximation or the analytical solution
- but we lose causality

from abstract simulation of the ODEs

 correct overapproximation of perfect Euler that captures causality

Outline

1. My method, its implementation and guarantees

SBML2BNET

STEP 1: Retrieve from the input reaction network

Structure: influence graph

Dynamics: Boolean transitions

- binarised time series from classic simulation of the ODEs
- abstract simulation of the ODEs

STEP 2: BN synthesis with ASK&D-BN

- 2. Evaluation of the approach
- 3. Link to other abstractions
- 4. Conclusion and perspectives

ASK&D-BN

STEP 2: Boolean network synthesis with

ASK&D-BN [Vaginay et al., 2021]

Structure
Influence graph
Dynamics
Time series / Boolean time series
List of Boolean transitions
Output
Boolean networks
Boolean networks

1. **Local search** species-wise synthesis of *all* the transition functions compatible with the given influence graph and time series

2. Global assembly produce all the possible BNs

ASK&D-BN [Vaginay et al., 2021]

Structure
Influence graph
Dynamics
Time series / Boolean time series
List of Boolean transitions
Output
Boolean networks
Boolean networks

Local search species-wise synthesis of all the transition functions compatible with the given influence graph and time series
 Generate candidates → Structure constraint → Dynamic constraint
 → Minimality constraint

2. Global assembly produce all the possible BNs

ASK&D-BN [Vaginay et al., 2021]

Structure
Influence graph
Dynamics
Time series / Boolean time series
List of Boolean transitions
Output
Boolean networks
Boolean networks

- 2. Global assembly produce all the possible BNs

Candidate transition function

Search space: $2^{3^{|\mathcal{S}|}}$ non-redundant DNF = non-redundant disjunction of non-redundant conjunctions

Candidate transition function

Search space: $2^{3^{|\mathcal{S}|}}$ non-redundant DNF = non-redundant disjunction of non-redundant conjunctions

Candidate transition function

Search space: $2^{3^{|S|}}$ non-redundant DNF = non-redundant disjunction of non-redundant conjunctions

Structure constraints

influence graph of the Boolean network \subseteq influence graph of the reaction network

Do not select a conjunction that uses a forbidden literal

```
% conjTaken(ID, Species, Sign)
ig(ParentID, x, V) :- conjTaken(ConjID, ParentID, V); V!=0.
:- ig(ParentID, x, V); not pig(ParentID, x, V).
```

Example

valid conjunction: $\neg C \land B$

invalid conjunction: $\neg A \land \neg C$

Dynamics constraints

 $m{--}$ (1) Build partial truth tables for each species X $m{--}$

What were the values of the putative inputs of species \boldsymbol{X} when its value changed?

putative input output

Dynamics constraints

 $oldsymbol{--}$ (1) Build partial truth tables for each species X $oldsymbol{--}$

What were the values of the putative inputs of species X when its value changed?

putative input	output
С	Α

input influence graph (unsigned)

вс в

AC C

Dynamics constraints

 $oldsymbol{----}$ (1) Build partial truth tables for each species X $oldsymbol{----}$

What were the values of the putative inputs of species X when its value changed?

	putative input	
	С	Α
$010 \xrightarrow{\boxed{1}} 011 \xrightarrow{\boxed{2}} 100 \xrightarrow{\boxed{3}} 001$		
	ВС	В
	AC	С

Dynamics constraints

-- (1) Build partial truth tables for each species X -

What were the values of the putative inputs of species \boldsymbol{X} when its value changed?

putative output
C A

 $010 \xrightarrow{C} 011 \xrightarrow{A,B,C} 100 \xrightarrow{A,C} 001$

Do not assume the underlying update scheme

BC B

AC C

Dynamics constraints

 $oldsymbol{--}$ (1) Build partial truth tables for each species X $oldsymbol{--}$

putative

What were the values of the putative inputs of species \boldsymbol{X} when its value changed?

	input	input	
	С	Α	
$010 \xrightarrow{C} 011 \xrightarrow{A,B,C} 100 \xrightarrow{A,C} 001$	1	1	2
Do not assume the underlying update scheme	ВС	В	
	AC	С	

Dynamics constraints

 $oldsymbol{----}$ (1) Build partial truth tables for each species X $oldsymbol{----}$

What were the values of the putative inputs of species \boldsymbol{X} when its value changed?

$010 \xrightarrow{C} 011$	$0 \xrightarrow{A,C} 001$
D .	 all days a constant

Do not assume the underlying update scheme

putative input		
С	Α	
0	0	(3)
1	1	2
ВС	В	
AC	С	

Dynamics constraints

--- (1) Build partial truth tables for each species X ---

What were the values of the putative inputs of species X when its value changed?

	putative input	putative input	
$010 \xrightarrow{C} 011 \xrightarrow{A,B,C} 100 \xrightarrow{A,C} 001$	C 0 1	A 0 1	3 2
Do not assume the underlying update scheme	BC 11	B 0	2
	AC 00 01 10	C 1 0	1 2 3

Dynamics constraints

 \longrightarrow (1) Build partial truth tables for each species X \longrightarrow

What were the values of the putative inputs of species \boldsymbol{X} when its value changed?

	putative input	output	
C ARC AC	C 0 1	A 0 1	3
010 \xrightarrow{C} 011 $\xrightarrow{A,B,C}$ 100 $\xrightarrow{A,C}$ 001 Do not assume the underlying update scheme	BC 11	B 0	2
	AC 00 01 10	C 1 0	1 2 3

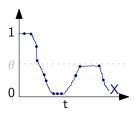
Truth table of a candidate function vs reconstructed truth tables

Dynamics constraints

(2) Minimise the error (ideally 0)

#minimize{E@2 : error(E)}. % highest priority

 X_t : continuous value of X at time t θ : binarisation threshold for X

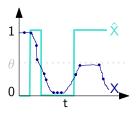


Dynamics constraints

(2) Minimise the error (ideally 0)

#minimize{E@2 : error(E)}. % highest priority

 X_t : continuous value of X at time t θ : binarisation threshold for X



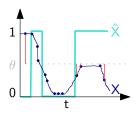
Dynamics constraints

(2) Minimise the error (ideally 0)

#minimize{E@2 : error(E)}. % highest priority

 X_t : continuous value of X at time t

 θ : binarisation threshold for X \mathcal{U} : set of unexplained time steps



Dynamics constraints

(2) Minimise the error (ideally 0)

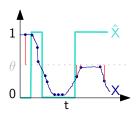
#minimize{E@2 : error(E)}. % highest priority

 X_t : continuous value of X at time t

 θ : binarisation threshold for X

 \mathcal{U} : set of unexplained time steps

 $E = \sum_{t \in \mathcal{U}} |\theta - X_t|$



Minimality constraint

Select the smallest expressions

```
\label{eq:minimality} \begin{split} &\text{Minimality} \rightarrow \text{most general conditions} \\ &\text{sizeconj}(\texttt{C}, \texttt{S}) :- \text{conjTakenID}(\texttt{C}); \texttt{S} = \# \text{sum} \{ | \texttt{V}|, \texttt{N} : \text{conj}(\texttt{C}, \texttt{N}, \texttt{V}) \} \; . \\ &\text{sizeDNF}(\texttt{S}) :- \; \texttt{S} = \# \text{sum} \{ \texttt{N}, \texttt{C} : \; \text{sizeconj}(\texttt{C}, \texttt{N}), \; \text{conjTakenID}(\texttt{C}) \} \; . \\ & \textit{N} \; \textit{elements in conjunction C} \\ &\# \text{minimize} \{ \texttt{S} @ 1 : \; \text{sizeDNF}(\texttt{S}) \} \; . \; \textit{N} \; \textit{lower priority} \end{split}
```

putative input	observed output
AB	X
00	
01	0
10	1
11	

Minimality constraint

Select the smallest expressions

putative input	observed output	possible completions			
AB	X				
00		0	1	0	1
01	0	0	0	0	0
10	1	1	1	1	1
11		0	0	1	1

Minimality constraint

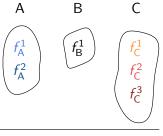
Select the smallest expressions

```
\label{eq:minimality} $$\operatorname{Minimality} \to \operatorname{most\ general\ conditions}$ sizeconj(C, S):-conjTakenID(C); S=\#sum\{|V|,N:conj(C, N, V)\} .$$ sizeDNF(S):- S=\#sum\{N,C: sizeconj(C, N), conjTakenID(C)\} .$$ % N elements in conjunction C $$ \#minimize\{S@1: sizeDNF(S)\}. % lower priority $$
```

putative input AB	observed output	possible completions			
00		0	(1)	0	1
01	0	0	0	0	0
10	1	1	1	1	1
11		0	0	1	1
5	smallest expressions size:	$\begin{array}{c} A \wedge \neg B \\ 2 \end{array}$	¬B 1	A 1	A ∨ ¬B 2

ASK&D-BN— Global assembly

Cartesian product of the set of transition functions synthesised for each species



$$\mathcal{B}_{1} = \{f_{A}^{1}, f_{B}^{1}, f_{C}^{1}\}$$

$$\mathcal{B}_{2} = \{f_{A}^{1}, f_{B}^{1}, f_{C}^{2}\}$$

$$\mathcal{B}_{3} = \{f_{A}^{1}, f_{B}^{1}, f_{C}^{2}\}$$

$$\mathcal{B}_{4} = \{f_{A}^{2}, f_{B}^{1}, f_{C}^{1}\}$$

$$\mathcal{B}_{5} = \{f_{A}^{2}, f_{B}^{1}, f_{C}^{2}\}$$

$$\mathcal{B}_{6} = \{f_{A}^{2}, f_{B}^{1}, f_{C}^{2}\}$$

Outline

1. My method, its implementation and guarantees

SBML2BNET

STEP 1: Retrieve from the input reaction network

Structure: influence graph

Dynamics: Boolean transitions

- binarised time series from classic simulation of the ODEs
- abstract simulation of the ODEs

STEP 2: BN synthesis with ASK&D-BN

- 2. Evaluation of the approach
- 3. Link to other abstractions
- 4. Conclusion and perspectives

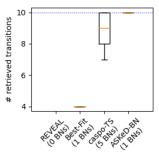
Evaluation of the approach

Evaluation of SBML2BNET

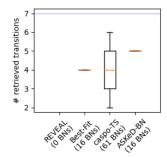
- The BN synthesis itself [Vaginay et al., 2021]: ASK&D-BN versus other state-of-the-art methods
- 2. One specific variant of the complete approach to real-world reaction networks [Vaginay et al., 2021, Vaginay et al., 2022]: influence graph + time series and midrange binarisation
- 3. Several variants of the complete approach on \mathcal{R}_{enz} : compare concrete and abstract simulation

ASK&D-BN versus REVEAL¹, Best-Fit² and Caspo-TS³

A. thaliana 5 components, 10 transitions



yeast 4 components, 7 transitions

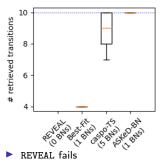


Evaluation of the approach ________ 30

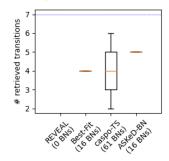
 $^{^{1}}$ [Liang et al., 1998] 2 [Lähdesmäki et al., 2003] 3 [Ostrowski et al., 2016]

ASK&D-BN versus REVEAL¹, Best-Fit² and Caspo-TS³

A. thaliana 5 components, 10 transitions



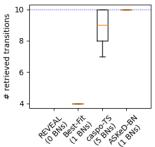
yeast 4 components, 7 transitions



Evaluation of the approach

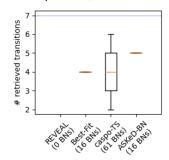
 $^{^{1}}$ [Liang et al., 1998] 2 [Lähdesmäki et al., 2003] 3 [Ostrowski et al., 2016]

A. thaliana5 components, 10 transitions



- REVEAL fails
- Best-Fit lacks consistency

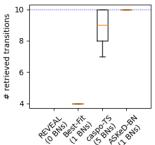
yeast 4 components, 7 transitions



¹[Liang et al., 1998] ²[Lähdesmäki et al., 2003] ³[Ostrowski et al., 2016]

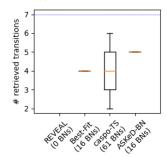
Evaluation of the approach _______ 30 ,

A. thaliana5 components, 10 transitions



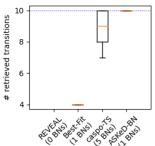
- REVEAL fails
- Best-Fit lacks consistency
- Caspo-TS returns more BNs, some of them with poor coverage because of reachability

yeast 4 components, 7 transitions



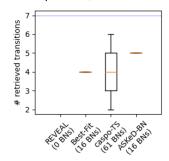
¹[Liang et al., 1998] ²[Lähdesmäki et al., 2003] ³[Ostrowski et al., 2016]

A. thaliana 5 components, 10 transitions



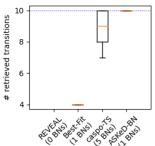
- REVEAL fails
- Best-Fit lacks consistency
- Caspo-TS returns more BNs, some of them with poor coverage because of reachability
- ► ASK&D-BN returns a small number of BN, with good coverage and low variance √

yeast 4 components, 7 transitions



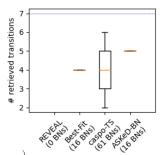
¹[Liang et al., 1998] ²[Lähdesmäki et al., 2003] ³[Ostrowski et al., 2016]

A. thaliana 5 components, 10 transitions



- REVEAL fails
- Best-Fit lacks consistency
- Caspo-TS returns more BNs, some of them with poor coverage because of reachability
- ► ASK&D-BN returns a small number of BN, with good coverage and low variance √

yeast 4 components, 7 transitions



confirmed on > 300 datasets generated from existing BNs from the repository of PyBoolNet

¹[Liang et al., 1998] ²[Lähdesmäki et al., 2003] ³[Ostrowski et al., 2016]

Evaluation of the approach ______ 30 /

Results to real-world reaction networks (from BioModels⁴)

Input: an extended reaction network rules and events
Output: a set of compatible Boolean networks, according to ASK&D-BN

SBML2BNET variant:

- 1. structure constraint (extended influence graph)
- 2. soft dynamics constraints (time series and midrange binarisation)
- ASK&D-BN

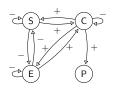
Result:

- on 155 reaction networks processed in less than 30 hours
- ▶ we synthesise perfect Boolean networks for \sim 90% of them \checkmark 139/155 sets of BNs have a coverage proportion median = 1

⁴[Malik-Sheriff et al., 2020]

A closer look: \mathcal{R}_{enz}

$$\underbrace{E + S \xleftarrow{e_{\mathrm{on}}}_{r_{\mathrm{off}}} C}^{r_{\mathrm{oat}}} \xrightarrow{e_{\mathrm{cat}}} E + 2 \times P$$



Setting n°1

- influence graph
- time seriesbinarised time series

midrange (0.8) and median (0.6):

$$f_S := \neg E$$

 $f_E := \neg S$
 $f_C := S$
 $f_P := C$

 \rightarrow Coverage depends on the binarisation procedure, BNs miss some influences

—— Setting n°2

full graph from abstract simulation

$$f_{S} := C \lor S$$

$$f_{E} := E \lor C$$

$$f_{C} := (E \land C) \lor C$$

$$f_{P} := C \lor P$$

 \rightarrow Perfect coverage but does not comply with the influence graph

⇒ They do not capture the same thing

Outline

1. My method, its implementation and guarantees

SBML2BNET

STEP 1: Retrieve from the input reaction network

Structure: influence graph

Dynamics: Boolean transitions

- binarised time series from classic simulation of the ODEs
- abstract simulation of the ODEs

STEP 2: BN synthesis with ASK&D-BN

- 2. Evaluation of the approach
- 3. Link to other abstractions
- 4. Conclusion and perspectives

Relation to other abstractions

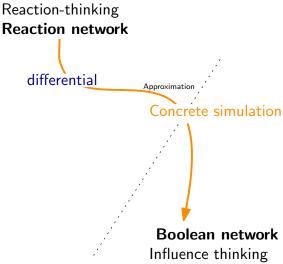
Reaction-thinking Reaction network

Boolean network
Influence thinking

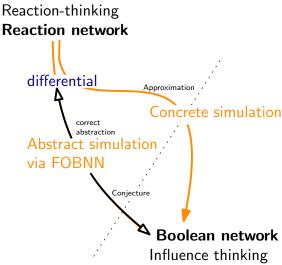
Reaction-thinking Reaction network

differential

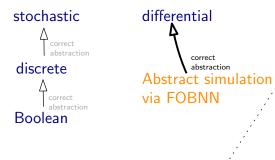
Boolean network Influence thinking



Reaction-thinking Reaction network differential Approximatio Concrete simulation Abstract simulatio via FOBNN Boolean network Influence thinking



Reaction-thinking Reaction network

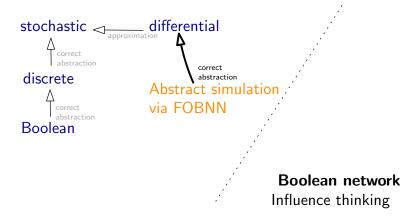


Boolean network Influence thinking

[Fages, Soliman, 2008a]

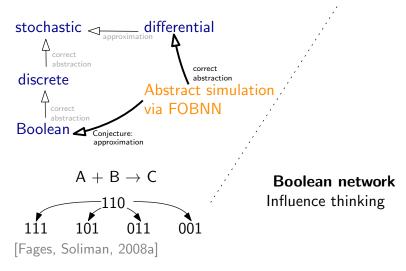
Relation to other abstractions

Reaction-thinking Reaction network



[Fages, Soliman, 2008a]

Reaction-thinking Reaction network



Relation to other abstractions

Outline

1. My method, its implementation and guarantees

SBML2BNET

STEP 1: Retrieve from the input reaction network

Structure: influence graph

Dynamics: Boolean transitions

- binarised time series from classic simulation of the ODEs
- abstract simulation of the ODEs

STEP 2: BN synthesis with ASK&D-BN

- 2. Evaluation of the approach
- 3. Link to other abstractions
- 4. Conclusion and perspectives

Conclusion and perspectives

Conclusion

Automatic synthesis of Boolean networks from a given reaction network, with guarentees. \checkmark

- Methodology
- ► Implementation (the SBML2BNET pipeline)
- Evaluation

Perspectives

- Ad hoc solution to facilitate some analyses Make SBML2BNET easy to use
- Better understanding of the formal relationship between reaction networks and Boolean network Two conjectures to investigate
- Improve the Boolean networks synthesis methods when applied to wet data

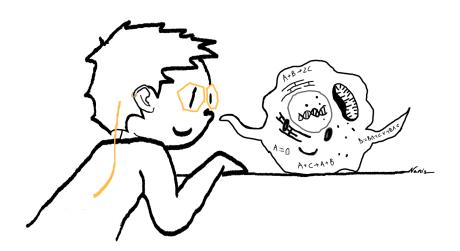
Investigate, in a controled environnement

- overfitting to the sequence of configuration?
- impact of the choice of the binarisation procedure and error measure

Publications

- J. Niehren et al. Abstract Simulation of Reaction Networks via Boolean Networks International Conference on Computational Methods in Systems Biology 2022
- A. Vaginay et al. From Quantitative SBML Models to Boolean Networks
 Complex Networks & Their Applications X 2022
- A. Vaginay et al. From Quantitative SBML Models to Boolean Networks Applied Network Science 2022
- A. Vaginay et al. Automatic Synthesis of Boolean Networks from Biological Knowledge and Data Optimization and Learning 2021
- A. Hirtz et al. GPER Agonist G-1 Disrupts Tubulin Dynamics and Potentiates Temozolomide to Impair Glioblastoma Cell Proliferation Cells 2021

Thank you for your attention.



References I

- [Bornholdt, 2005]
 S. Bornholdt
 Less Is More in Modeling Large Genetic Networks,
 2005
- ► [Fages, Soliman, 2008a]
 F. Fages, S. Soliman,
 Abstract Interpretation and Types for Systems Biology,
 Theoretical Computer Science, vol. 403, pp. 52–70, 2008
- ▶ [Fages, Soliman, 2008b]
 F. Fages, S. Soliman,
 From Reaction Models to Influence Graphs and Back: A Theorem,
 Lecture Notes in Computer Science, pp. 90–102 2008
- ► [Hoops et al., 2006]
 S. Hoops et al.
 COPASI—a COmplex PAthway Simulator,
 Bioinformatics, vol. 22, pp. 3067–3074 2006

References II

► [Kohl et al., 2010]

P. Kohl et al.

Systems Biology: An Approach,

Clinical Pharmacology & Therapeutics vol. 88-1 pp. 25–33 2010,

► [Lähdesmäki et al., 2003]

H. Lähdesmäki et al.

On Learning Gene Regulatory Networks under the Boolean Network Model, *Machine Learning*, vol. 52-1 pp. 147–167 2003,

▶ [Liang et al., 1998]

S. Liang et al.

REVEAL, a General Reverse Engineering Algorithm for Inference of Genetic Network Architectures

Pacific Symposium on Biocomputing. pp. 18–29, 1998,

► [Malik-Sheriff et al., 2020]

R. Malik-Sheriff et al.

BioModels—15 Years of Sharing Computational Models in Life Science *Nucleic Acids Research* vol. 48-D1, pp. D407-D415, 2020

References III

- ► [Niehren et al., 2022]
 - J. Niehren et al.

Abstract Simulation of Reaction Networks via Boolean Networks CMSB2022: International Conference on Computational Methods in Systems Biology 2022,

- ► [Ostrowski et al., 2016] M. Ostrowski et al.
 - Boolean Network Identification from Perturbation Time Series Data Combining Dynamics Abstraction and Logic Programming *Biosystems* vol. = 149, pp. 139–153, 2016
- ► [Vaginay et al., 2021]
 - A. Vaginay, et al.

Automatic Synthesis of Boolean Networks from Biological Knowledge and Data

Communications in Computer and Information Science pp. 156-170, 2021

References IV

- ► [Vaginay et al., 2021]
 A. Vaginay, et al.
 From Quantitative SBML Models to Boolean Networks
 Complex Networks & Their Applications X 2021
- ► [Vaginay et al., 2022]
 A. Vaginay, et al.
 From Quantitative SBML Models to Boolean Networks
 Applied Network Science vol. 7-1 pp. 1–23, 2022