Sélection et analyse de modèles pour les réseaux biologiques :

utilisation des connaissances du domaine et application aux réseaux perturbés dans les pathologies

Athénaïs Vaginay, Taha Boukhobza, Malika Smaïl-Tabbone

13 Décembre 2022

Mon domaine : la biologie des systèmes

Modélisation formelle et raisonnement concernant des systèmes biologiques

V : ensemble de **composants** d'intérêts (= gènes, protéines...)

Les questions classiques :

- « Comment les concentrations / activités des composants évoluent-t-elles au cours du temps ? »
- « Peut-on réparer des systèmes cassés (pathologiques) en évitant les états indésirables ? »
- « Peut-on produire plus d'un composé d'intérêt ? »

Mon projet de thèse

But : synthétiser un (ensemble de) Réseau(x) d'automates Booléens (RB) compatible(s) avec un Réseau de Réactions (RR) donnés.

Raison ? Les RB sont plus simples à comprendre, et plus faciles à utiliser pour certaines tâches (tel que le contrôle).

Préliminaires : Qu'est-ce qu'un RR ? Qu'est-ce qu'un RB ?

Partie I : (Vaginay et al. OLA 2021) Synthèse de RB à partir de contraintes structurelles et dynamiques.

Partie II : (Niehren et al. CMSB 2022, Vaginay et al. CNA 2021, 2022) Extraire la structure et la dynamique d'un RR, afin d'appliquer la synthèse.

Réseaux de réactions

Ensemble de réactions qui transforme des réactants en produits avec une stœchiométrie et une vitesse données.

Dynamique (souvent) étudiée par le biais d'équations différentielles.

$$\left\{ \forall \mathsf{X} \in V, \dot{\mathsf{X}} = \sum_{r \in \mathscr{R}} e_r \times \delta_r(\mathsf{X}) \right\}$$

Extensions possibles : évènements, règles algébriques, ...

Example de RR : le processus enzymatique $r_{\rm cat}$

$$\begin{split} \mathscr{R} &= \{r_{\rm on} = (e_{\rm on}, & 1 \times \mathsf{E} + 1 \times \mathsf{S}, & 1 \times \mathsf{C}), \\ r_{\rm off} &= (e_{\rm off}, & 1 \times \mathsf{C}, & 1 \times \mathsf{S} + 1 \times \mathsf{E}), \\ r_{\rm cat} &= (e_{\rm cat}, & 1 \times \mathsf{C}, & 1 \times \mathsf{E} + 2 \times \mathsf{P}) \} \end{split}$$

Example de RR : le processus enzymatique

$$\underbrace{\underbrace{\mathsf{E}}_{r_{\mathrm{off}}}^{r_{\mathrm{on}}} \mathsf{E}_{e_{\mathrm{off}}}^{r_{\mathrm{cat}}} \mathsf{E}_{e_{\mathrm{cat}}}^{r_{\mathrm{cat}}} \mathsf{E}_{e_{\mathrm{cat}}}^{r_{\mathrm{cat}}}^{r_{\mathrm{cat}}}} \mathsf{E}_{e_{\mathrm{$$

$$\begin{split} \mathscr{R} &= \{r_{\mathrm{on}} = (e_{\mathrm{on}}, & 1 \times \mathsf{E} + 1 \times \mathsf{S}, & 1 \times \mathsf{C}), \\ r_{\mathrm{off}} &= (e_{\mathrm{off}}, & 1 \times \mathsf{C}, & 1 \times \mathsf{S} + 1 \times \mathsf{E}), \\ r_{\mathrm{cat}} &= (e_{\mathrm{cat}}, & 1 \times \mathsf{C}, & 1 \times \mathsf{E} + 2 \times \mathsf{P}) \} \end{split}$$

$$\left\{ \forall \mathbf{X} \in V, \dot{\mathbf{X}} = \sum_{r \in \mathscr{R}} e_r \times \delta_r(\mathbf{X}) \right\}$$

$$\dot{\mathsf{C}} = \underbrace{e_{\mathrm{on}} \times 1}_{r_{\mathrm{on}}} + \underbrace{e_{\mathrm{off}} \times -1}_{r_{\mathrm{off}}} + \underbrace{e_{\mathrm{cat}} \times -1}_{r_{\mathrm{cat}}}$$

Réseau (d'Automates) Booléen(s) (RB)

Ensemble de n fonctions de transitions qui codent la dynamique Booléenne $\mathbb{B}=\{0,1\}$ de n composants (automates)

$$\{\forall \mathsf{X} \in V, f_{\mathsf{X}} : \mathbb{B}^n \to \mathbb{B}\}$$

© Arts et Métiers-Cnam, Sylvain Pelly

Réseau (d'Automates) Booléen(s) (RB)

Ensemble de n fonctions de transitions qui codent la dynamique Booléenne $\mathbb{B} = \{0, 1\}$ de n composants (automates)

$$\{\forall \mathsf{X} \in V, f_{\mathsf{X}} : \mathbb{B}^n \to \mathbb{B}\}\$$

© Arts et Métiers-Cnam, Sylvain Pelly

Réseau Booléen — un exemple

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} := 0 \\ f_{\mathsf{B}} := (\mathsf{B} \land \neg \mathsf{C}) \lor (\neg \mathsf{B} \land \mathsf{C}) \\ f_{\mathsf{C}} := \neg \mathsf{C} \end{cases}$$

Réseau Booléen — un exemple, sa structure

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} := 0 \\ f_{\mathsf{B}} := (\mathsf{B} \land \neg \mathsf{C}) \lor (\neg \mathsf{B} \land \mathsf{C}) \\ f_{\mathsf{C}} := \neg \mathsf{C} \end{cases}$$

graphe d'interactions :

Réseau Booléen — un exemple, sa dynamique

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} := 0 \\ f_{\mathsf{B}} := (\mathsf{B} \land \neg \mathsf{C}) \lor (\neg \mathsf{B} \land \mathsf{C}) \\ f_{\mathsf{C}} := \neg \mathsf{C} \end{cases}$$

graphe de transitions, sous un mode de màj U:

Partie I : (Vaginay et al. OLA 2021) Synthèse de RB à partir d'une structure et d'une dynamique données

structure : Prior Knowledge Network (PKN)
= interactions putatives entre les composants, domaine de
recherche

t	1	2	3	4	5	6	7	8	9	10	11	12	13	
A	0	3	7	13	20	30	49	61	100	63	36	25	2	
В	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0	27	36	42	60	75	54	44	38	48	60	72	88	

structure : Prior Knowledge Network (PKN)
= interactions putatives entre les composants, domaine de
recherche

t	1	2	3	4	5	6	7	8	9	10	11	12	13	
A	0	3	7	13	20	30	49	61	100	63	36	25	2	
В	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0	27	36	42	<mark>60</mark>	75	54	44	38	48	60	72	88	

structure : Prior Knowledge Network (PKN)
= interactions putatives entre les composants, domaine de
recherche

t	1	2	3	4	5	6	7	8	9	10	11	12	13	
A	0	3	7	13	20	30	49	61	100	63	36	25	2	
В	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0	27	36	42	60	75	54	44	38	48	60	72	88	

structure : Prior Knowledge Network (PKN)
= interactions putatives entre les composants, domaine de
recherche

t	1	2	3	4	5	6	7	8	9	10	11	12	13	
A	0	3	7	13	20	30	49	61	100	63	36	25	2	
В	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0	27	36	42	60	75	54	44	38	48	60	72	88	

structure : Prior Knowledge Network (PKN)
= interactions putatives entre les composants, domaine de
recherche

		(010	-	\rightarrow	011	-	\rightarrow	100	-	\rightarrow		1	
t	1	2	3	4	5	6	7	8	9	10	11	12	13	
A	0	3	7	13	20	30	49	61	100	63	36	25	2	
В	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0	27	36	42	60	75	54	44	38	48	60	72	88	

ASKeD-BN versus approches existantes (Vaginay et al. OLA 2021)

PKN (signé) + TS

- synthèse de tous les RB compatibles (avec toutes les minDNFs équivalentes)
- pas d'hypothèse sur la classe des fonctions ni sur le mode de màj sous-jacent

ASKeD-BN versus approches existantes (Vaginay et al. OLA 2021)

PKN (signé) + TS

- synthèse de *tous* les RB compatibles (avec toutes les minDNFs équivalentes)
- pas d'hypothèse sur la classe des fonctions ni sur le mode de màj sous-jacent

	DKN	toute	s les	hypothèses				
PKN		minDNF	classes	sur la TS				
REVEAL	non signé	1	1	transition sync. à chaq. pas de temps				
Best-Fit	non signé	1	1	transition sync. à chaq. pas de temps				
caspo-TS	1	🗸 mo	onotones	accessibilité asynchrone				

ASKeD-BN versus approches existantes (Vaginay et al. OLA 2021)

PKN (signé) + TS

- synthèse de *tous* les RB compatibles (avec toutes les minDNFs équivalentes)
- pas d'hypothèse sur la classe des fonctions ni sur le mode de màj sous-jacent

	PKN	toute	s les	hypothèses
		MINDNE	classes	sur la TS
REVEAL	non signé	1	\checkmark	transition sync. à chaq. pas de temps
Best-Fit	non signé	1	\checkmark	transition sync. à chaq. pas de temps
caspo-TS	1	🗸 mo	onotones	accessibilité asynchrone
t 1 2 3 4 5 6 7 A B C	8 9 10 11 12	13 01 01 01 01	$\begin{array}{c} 0 \rightarrow 011 \\ 0 \rightarrow 010 \\ 0 \rightarrow * \rightarrow \end{array}$	$ \rightarrow 100 \rightarrow 001 \rightarrow 010 \rightarrow 010 \rightarrow 011 \rightarrow 011 \rightarrow \dots \\ 011 \rightarrow * \rightarrow 100 \rightarrow * \rightarrow 001 \rightarrow * $

```
Partie II :
Appliquer ASKeD-BN sur la structure (\sim PKN)
et la dynamique (\sim séquence de configurations) obtenues d'un RR
```

- 1. utiliser des outils dédiés de simulation des RR (Vaginay et al. CNA 2021 & Vaginay et al. 2022)
- 2. interprétation abstraite des ODEs du RR (Niehren et al. CMSB 2022)

$$\dot{a} = 0, \dot{v} = a, \dot{x} = v$$

 $a(0) = 1, v(0) = 0, x(0) = 0$

$$\begin{split} \dot{a} &= 0, \dot{v} = a, \dot{x} = v \\ a(0) &= 1, v(0) = 0, x(0) = 0 \\ \text{avec l'algo d'Euler, } \Delta_t &= 1: \\ i(t) &= i(t - \Delta_t) + \dot{i}(t - \Delta_t) \times \Delta_t \\ \underbrace{ t \quad 0 \quad 1 \quad 2 \quad 3}_{\textbf{a} \quad 1 \quad 1 \quad 1 \quad 1} \\ v \quad 0 \quad 1 \quad 1 \quad 1 \\ x \quad 0 \quad 0 \quad 1 \quad 2 \end{split}$$

$$\begin{split} \dot{a} &= 0, \dot{v} = a, \dot{x} = v \\ a(0) &= 1, v(0) = 0, x(0) = 0 \end{split} \\ \text{avec l'algo d'Euler, } \Delta_t = 1: & \text{avec la solution analytique} \\ \dot{i}(t) &= i(t - \Delta_t) + \dot{i}(t - \Delta_t) \times \Delta_t & \text{ou un algo malin} \\ \underline{t \ 0 \ 1 \ 2 \ 3}_{\hline a \ 1 \ 1 \ 1 \ 1 \ 1} & \underline{t \ 0 \ 1 \ 2 \ 3}_{\hline a \ 1 \ 1 \ 1 \ 1} & \frac{t \ 0 \ 1 \ 2 \ 3}{a \ 1 \ 1 \ 1 \ 1 \ 1} \\ \times \ 0 \ 0 \ 1 \ 2 & x \ 0 \ 1 \ 2 \ 3 \end{split}$$

$$\begin{split} \dot{a} &= 0, \dot{v} = a, \dot{x} = v \\ a(0) &= 1, v(0) = 0, x(0) = 0 \\ \text{avec l'algo d'Euler, } \Delta_t = 1: & \text{avec la solution analytique} \\ \dot{i}(t) &= \dot{i}(t - \Delta_t) + \dot{i}(t - \Delta_t) \times \Delta_t & \text{ou un algo malin} \\ \hline \frac{t \ 0 \ 1 \ 2 \ 3}{a \ 1 \ 1 \ 1 \ 1 \ 1} & \frac{t \ 0 \ 1 \ 2 \ 3}{a \ 1 \ 1 \ 1 \ 1} \\ v \ 0 \ 1 \ 2 & x \ 0 \ 1 \ 2 \ 3 \end{split}$$

abstraction de
$$\mathbb{R}^+$$
 dans \mathbb{B} :

$$\begin{cases}
0 \text{ si } 0, \\
1 \text{ sinon}
\end{cases}$$

séquence de configurations
$$[a, v, x]$$
:
100 \rightarrow 110 \rightarrow 111 \circlearrowright vs 100 \rightarrow 111 \circlearrowright

Extraction de la dynamique d'un RR

Niehren et al. CMSB 2022 :

logique du premier ordre pour simuler abstraitement (0 si 0, 1 sinon) à partir de toutes les abstractions de CI possibles

graphe de transitions Booléen, correcte vis-à-vis de l'algo d'Euler et qui conserve la causalité Vaginay et al. CNA 2021, 2022 :

simulation avec un outil dédié, à partir d'une CI donnée, puis binarisation (0 si < seuil, 1 sinon)

gère les RR étendus, mais ne garantie pas de conserver la causalité

Évaluation de la conversion $\mathsf{RR}\to\mathsf{RB}$

Vaginay et al. CNA 2021, 2022 : plus de 200 RR (étendus) traîtés automatiquement avec un outils de simulation dédiée

Bons résultats (d'après nos critères) sur ce cas d'application (**assez spécifique**)

- graphe d'interactions \subseteq PKN (par construction)
- graphe de transitions (màj générale) recouvre une « bonne » proportion des séquences de transitions données
- petit nombre de RB synthétisés (avantage de la minimalité des DNF)

Il me reste à investiguer

- autres critères d'évaluation, pour prévenir le « sur-apprentissage » (inconvénient de la minimalité des DNF).
- autres procédures de binarisation
- autres mesures d'erreur
- ▶ un meilleur encodage de la méthode de synthèse
 > 2^{2^k} candidats par composantes
 → pire cas : > 30h, > 700Go de RAM

Conclusion

- les réseaux de réactions (RR) sont très répandus et facile d'accès
- les réseaux Booléens (RB) sont parfois plus pratiques
- utiliser un RR et un RB en parallèle permet d'étudier le système biologique sous différentes facettes, et de comprendre la relation formelle entre ces deux formalismes de philosophie bien distincte

Merci pour votre attention, Merci à la FCH,

des questions ? athenais.vaginay@loria.fr

Mes encadrants: Taha Boukobzba et Malika Smaïl-Tabbonne

Tout un tas de formalismes

Statistiques basés sur les corrélation, et non dirigés

Boolean network

Differential equation

Bayesian network

Process algebras

((b(x,de)[E]) || (B(y, dI)[I])) bh(x, dE) bh(y, dI) (E || I)

Constraint based model

Hybrid systems

Petri Nets

Agent-based model

Cellular automata

		П	П	
- 8	H	ŧŦ	÷	 н.
н	H	H		 н
		HT.		Η.
н		-	++	н.
. н	H	⊷	⊷	 н.

Interacting state machine Compartment based Rule based

. . .

Mon approche: ASKeD-BN (Vaginay et al. OLA 2021)

- 1. **recherche locale**: generer toutes les fonctions de transitions (en minDNF) compatible avec un PKN et une TS donnée.
- 2. assemblage: produire tous les RB possibles

ASKeD-BN— modeling a candidate DNF

pick a subset of conjunctions among all the possible ones (given)

% GIVEN : conj(ID, Component, Sign conj(0, a, 0). conj(0, b, 0). conj(0, c, 0). $conj(1, a, 1). conj(1, b, -1). conj(1, c, 0). % A \land \neg B$ $conj(2, a, -1). conj(1, b, 0). conj(1, c, -1). % \neg A \land \neg C$ $conj(3, a, -1). conj(3, b, -1). conj(3, c, -1). % \neg A \land \neg B \land \neg C$ $conj(4, a, 1). conj(4, b, 1). conj(4, c, 1). % A \land B \land C$...

1{conjTakenID(0..maxNbPossibleConj)}. % 3^{|V|} possibilities conjTaken(I, N, V) :- conj(I, _, _); conjTakenID(I).

Example: taken = $\{1, 2\} \rightarrow \text{candidate} = (A \land \neg B) \lor (\neg A \land \neg C)$

ASKeD-BN- structural constraints

"it is false to select a conjunction that uses a literal that is not allowed by the $\mathsf{PKN}"$

ig(ParentID, x, V):- conjTaken(ConjID, ParentID, V); V!=0. :- ig(ParentID, x, V) ; not pkn(ParentID, x, V).

(1) Use state sequence with the parcimonious update schema possible + the PKN to build partial truth tables

010 $\xrightarrow{\{C\}}$ 011 $\xrightarrow{\{A,B,C\}}$ 100 $\xrightarrow{\{A,C\}}$ 001

(1) Use state sequence with the parcimonious update schema possible + the PKN to build partial truth tables

		putative input	output
	for A:	С	
	0	0	0
$\overline{}$ + $\overline{}$	1	1	1
	for B:	B, C	
+ /+	0	00	
	1	01	
	2	10	
	3	11	0
$010 \xrightarrow{\{C\}} 011 \xrightarrow{\{A,B,C\}} 100 \xrightarrow{\{A,C\}} 001$	for C:	A, C	
	0	00	
	1	01	0
	2	10	1
	3	11	

(2) discard candidates that doesn't match the truth table

		putative	output
		input	
examples of eliminated candidates	for A:	С	
	0	0	0
⊸C	1	1	1
for B:	for B:	В, С	
1	0	00	
$B \lor C$	1	01	
$B\wedgeC$	2	10	
$(A \land B) \lor (\neg A \land \neg B)$	3	11	0
for C:	for C:	A, C	
0	0	00	
1 C	1	01	0
C	2	10	1
	3	11	

(3) Optional: minimize the error (to avoid UNSAT)

#minimize{MAE@2 : mae(MAE)}. % highest priority

 i_t : continuous value of i at time t θ_i : binarisation threshold for i

(3) Optional: minimize the error (to avoid UNSAT)

#minimize{MAE@2 : mae(MAE)}. % highest priority

- i_t : continuous value of i at time t
- θ_i : binarisation threshold for i
- T: # time steps

(3) Optional: minimize the error (to avoid UNSAT)

#minimize{MAE@2 : mae(MAE)}. % highest priority

- i_t : continuous value of i at time t
- θ_i : binarisation threshold for i
- T: # time steps

(3) Optional: minimize the error (to avoid UNSAT)

#minimize{MAE@2 : mae(MAE)}. % highest priority

- i_t : continuous value of i at time t
- θ_i : binarisation threshold for i
- T: # time steps
- \mathscr{U} : set of unexplained time steps

(3) Optional: minimize the error (to avoid UNSAT)

#minimize{MAE@2 : mae(MAE)}. % highest priority

- i_t : continuous value of i at time t
- θ_i : binarisation threshold for i
- T: # time steps
- \mathscr{U} : set of unexplained time steps

minimise the Mean Absolute Error (ideally 0)

$$\mathsf{MAE}_{f_i} = \frac{\sum_{t \in \mathscr{U}_{f_i}} |\theta_i - i_t|}{T}$$

ASKeD-BN- minimality constraint

Find the smallest minDNF(s) among the minDNFs compatible with the (partial) truth table

	putative input	output	possible guess						
0	00		0	1	0	1			
1	01	0	0	0	0	0			
2	10	1	1	1	1	1			
3	11		0	0	1	1			
		minDNF	$\neg A \land B$	¬Α	В	$\neg A \lor B$			
		size	2	1	1	2			

sizeconj(C, S):-conjTakenID(C);S=#sum{|V|,N:conj(C, N, V)} .
sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)} .
% N elements in conjunction C
#minimize{S@1 : sizeDNF(S)}. % lower priority

Quelle est la structure d'un RR ?

$$\mathscr{R} = \underbrace{\overbrace{\mathsf{E} + \mathsf{S} \xleftarrow[e_{\mathrm{off}}]{e_{\mathrm{off}}} \mathsf{C}}^{r_{\mathrm{oat}}} \mathsf{C} \xrightarrow[e_{\mathrm{cat}}]{e_{\mathrm{cat}}} \mathsf{E} + 2 \times \mathsf{P}}_{r_{\mathrm{off}}}$$

Il y a une réaction r dans laquelle...

- 1. X est un réactant et Y disparait **alors** $X \xrightarrow{-} Y$
- 2. X est un inhibiteur and Y apparait **alors** $X \xrightarrow{-} Y$
- 3. X est un réactant ou un activateur et Y apparait alors X $\xrightarrow{+}$ Y
- 4. X est un inhibiteur etY disparait **alors** $X \xrightarrow{+} Y$

Quelle est la structure d'un RR ?

$$\mathscr{R} = \underbrace{\overbrace{\mathsf{E} + \mathsf{S} \xleftarrow[e_{\mathrm{off}}]{e_{\mathrm{off}}} \mathsf{C}}^{r_{\mathrm{cat}}} \mathsf{C} \xrightarrow[e_{\mathrm{cat}}]{e_{\mathrm{cat}}} \mathsf{E} + 2 \times \mathsf{P}}_{r_{\mathrm{off}}}$$

Il y a une réaction r dans laquelle...

- 1. X est un réactant et Y disparait **alors** $X \xrightarrow{-} Y$
- 2. X est un inhibiteur and Y apparait **alors** $X \xrightarrow{-} Y$
- 3. X est un réactant ou un activateur et Y apparait alors X $\xrightarrow{+}$ Y
- 4. X est un inhibiteur etY disparait **alors** $X \xrightarrow{+} Y$

ODE system in FOL — syntax

Signature: $\Sigma = \mathscr{V} \cup \mathbb{R} \cup \{+, *\}$

 $\begin{array}{ll} \text{Terms:} \ e,e' \in \mathscr{E}_{\varSigma}(\mathscr{V}) & ::= x \ \mid \rho \mid e+e' \mid e*e' \\ \text{where} \ x \in \mathscr{V}, \ \rho \in \mathbb{R}, \end{array}$

Formula: $\phi, \phi' \in \mathscr{F}_{\Sigma}(\mathscr{V}) ::= e = e' \mid \exists x \phi \mid \phi \land \phi' \mid \neg \phi$ where $x \in \mathscr{V}$, $x \in \mathscr{V}$, and $e \in \mathscr{E}_{\Sigma}(\mathscr{V})$

ODE system in FOL — syntax

 $\begin{array}{ll} \text{Signature: } \mathcal{\Sigma} = \mathcal{V} \cup \mathbb{R} \cup \{+, *\} \\ \text{Terms: } e, e' \in \mathscr{E}_{\Sigma}(\mathcal{V}) & ::= x \mid \rho \mid e + e' \mid e * e' \\ \text{where } x \in \mathcal{V}, \ \rho \in \mathbb{R}, \\ \text{Formula: } \phi, \phi' \in \mathscr{F}_{\Sigma}(\mathcal{V}) & ::= e = e' \mid \exists x \phi \mid \phi \land \phi' \mid \neg \phi \\ \text{where } x \in \mathcal{V}, \ x \in \mathcal{V}, \ \text{and } e \in \mathscr{E}_{\Sigma}(\mathcal{V}) \end{array}$

variable $\mathscr{V} = \{i \forall i \in V\} \cup \{i \forall i \in V\}$, ODE system = a FOL formula:

$$odes(R) =_{def} \bigwedge_{A \in V} \mathring{A} = \sum_{r \in R} \delta_r(A) * e_r \land A \ge 0$$

Creation of a new formula from the ODE formula

$$\begin{split} \mathscr{V} &= \{i \,\forall i \in V\} \cup \{\overset{\circ}{i} \,\forall i \in V\} \cup \{\overrightarrow{i} \,\forall i \in V\} \cup \{\overrightarrow{i} \,\forall i \in V\} \cup \{\overrightarrow{i} \,\forall i \in V\} \\ \phi &= \exists \overset{\circ}{v} \exists \vec{x} . \\ \overset{a}{=} 0 & \wedge \overset{\circ}{v} = a & \wedge \overset{\circ}{x} = v \\ \wedge \overset{\circ}{a} = 0 & \wedge \overset{\circ}{v} = \overrightarrow{a} & \wedge \overset{\circ}{x} = \overrightarrow{v} \\ \wedge \overset{\circ}{a} = a + \overset{\circ}{a} & \wedge \overrightarrow{v} = v + \overset{\circ}{v} & \wedge \overrightarrow{x} = x + \overset{\circ}{x} \\ \wedge a \leq \overrightarrow{a} & \wedge v \leq \overrightarrow{v} & \wedge x \leq \overrightarrow{x} \\ \wedge a \geq 0 & \wedge v \geq 0 & \wedge x \geq 0 \end{split}$$

 $fv(\phi) = \{a, v, x, \overrightarrow{a}, \overrightarrow{v}, \overrightarrow{x}\}$

 \rightarrow An abstract state transition graph is made from all the assignment of the free variables that make ϕ true. Domain = $\mathbb{S} = \{-1, 0, 1\}$ (but on \mathbb{B} for the free variables)

The SBML2BN Pipeline

input: a *complete* quantitative model in the Systems Biology Markup Language

output: a set of compatible Boolean networks

