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My field: Systems Biology

Formal modeling and reasoning about biological systems

V : set of components of interest (= genes, proteins. . . )

questions in this field:
I “How do their concentration / activity evolve in time?”
I “Can we fix broken (pathological) systems by avoiding

undesirable state?”
I “Can we produce more of some desirable product of interest?”
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What I have vs what I want

Chemical Reaction Network (CRN) model of an enzymatic process:

R =

ron rcat︷ ︸︸ ︷︷ ︸︸ ︷
E + S eon←−−→

eoff

C ecat−−−−→ E + 2× P︸ ︷︷ ︸
roff

V = {E, S,C,P}

A reaction transforms reactants to products
at a given speed with given net stoichiometry

speed: function of the reactants,
and some optional modifiers
(activators and/or inhibitors)

S e−−→ 2× P, e =
ecat × E0 × S
KM + S

δrcat(E) = +1

δrcat(S) = 0

δrcat(C) = −1

δrcat(P) = +2
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What I have vs what I want
Boolean Network (BN): set of n Boolean expressions
encoding for Boolean functions

{∀i ∈ V, fi : Bn → B}

B = {0/inactive, 1/active}
state: a vector of Bn

B Boolean function 6= Boolean expression
we consider disjonctive normal form (DNF)

(¬a ∧ ¬b)
∨( a ∧ ¬b)
∨(¬a ∧ b)

¬a
∨(a ∧ ¬b)

¬b
∨(¬a ∧ b)

¬a ∨ ¬b

a

b
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Boolean Network — an example

B =


fA :=0

fB :=(B ∧ ¬C) ∨ (¬B ∧ C)

fC :=¬C

5 / 28



Boolean Network — an example, its structure

B =


fA :=0

fB :=(B ∧ ¬C) ∨ (¬B ∧ C)

fC :=¬C

interaction graph:

A

B

C

+
−

+
−

−
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Boolean Network — an example, its dynamics

B =


fA :=0

fB :=(B ∧ ¬C) ∨ (¬B ∧ C)

fC :=¬C

state transition graph under an update scheme U :
synchronous

U = {{A,B,C}}
asynchronous

U = {{A}, {B}, {C}}
general

U = P({A,B,C}) \ ∅
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My PhD project

Goal: synthetise (set of) BN compatible with a given CRN.
Why? Because BNs are easier to understand and to work with for
certain tasks (such as control).

Part I:
Synthesis of BN from a given dynamics and (optional) structure

Part II:
Apply the synthesis on the structure and the dynamics of a CRN
1. Derive the dynamics of a CRN using abstract interpretation of

its ODEs
2. Derive the structure and dynamics of a CRN when 1. is not

applicable.
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Structural Knowledge and Dynamical Data

structural knowledge: Prior Knowledge Network (PKN)
= putative interactions between the components

A

B

C
+

+
−

+

+
−

−

dynamical data: Time Series (TS) = concentrations of the
components over time, sequence of states

t 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .
A 0 3 7 13 20 30 49 61 100 63 36 25 2 . . .
B 100 86 64 57 54 53 51 49 45 37 33 28 22 . . .
C 0 27 36 42 60 75 54 44 38 48 60 72 88 . . .
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Our Wishes VS Existing Approaches

I use a signed PKN + TS

I synthesise all the compatible BNs (with all the equivalent minDNFs)

I no assumption on the class of functions and on the underlying
update scheme of the seq. of states.

signed
PKN all minDNF, all class

assumption
on TS & config. seq.

REVEAL 7 7 3 each timestep = sync. transition
Best-Fit 7 7 3 each timestep = sync. transition
caspo-TS 3 3 monotonous async. reachability

t 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

A . . .
B . . .
C . . .

010 → 011 → 100 → 001
010 → 010 → 010 → 010 → 011 → 011 → . . .
010 → * → 011 → * → 100 → * → 001 → *
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Our own approach: ASKeD-BN

1. local search: generate all the possible transition functions (in
minDNF) compatible with a given PKN and TS.

2. global assembly: produce all the possible BNs.

Answer Set Programming (ASP) because. . .
I several tools are now developed with ASP in systems biology
I we can focus only on modeling the problem and not on the

way to get the solutions
I we were told it is very fast and efficient, fun to learn, . . .

11 / 28



Our own approach: ASKeD-BN

1. local search: generate all the possible transition functions (in
minDNF) compatible with a given PKN and TS.

2. global assembly: produce all the possible BNs.

Answer Set Programming (ASP) because. . .
I several tools are now developed with ASP in systems biology
I we can focus only on modeling the problem and not on the

way to get the solutions
I we were told it is very fast and efficient, fun to learn, . . .

11 / 28



ASKeD-BN— modeling a candidate DNF

pick a subset of conjunctions among all the possible ones (given)

% GIVEN : conj(ID, Component, Sign}
conj(0, a, 0). conj(0, b, 0). conj(0, c, 0).
conj(1, a, 1). conj(1, b,-1). conj(1, c, 0). % A ∧ ¬B
conj(2, a, -1). conj(1, b, 0). conj(1, c, -1). % ¬A ∧ ¬C
conj(3, a, -1). conj(3, b,-1). conj(3, c, -1). % ¬A ∧ ¬B ∧ ¬C
conj(4, a, 1). conj(4, b, 1). conj(4, c, 1). % A ∧ B ∧ C
...

1{conjTakenID(0..maxNbPossibleConj)}. % 3|V | possibilities
conjTaken(I, N, V) :- conj(I, _, _); conjTakenID(I).

Example: taken = {1, 2} → candidate = (A ∧ ¬B) ∨ (¬A ∧ ¬C)
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ASKeD-BN— structural constraints

interaction graph

A

B

C

+
−

+
−

−
⊆

PKN

A

B

C
+

+
−

+

+
−

−

“it is false to select a conjunction that uses a literal that is not
allowed by the PKN”

ig(ParentID, x, V):- conjTaken(ConjID, ParentID, V); V!=0.
:- ig(ParentID, x, V) ; not pkn(ParentID, x, V).
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ASKeD-BN— dynamical constraints
(1) Use state sequence with the parcimonious update schema possible +
the PKN to build partial truth tables

A

B

C
+

+
−

+

+
−

−

010
{C}−−→ 011

{A,B,C}−−−−−→ 100
{A,C}−−−−→ 001

putative
input output

for A: C
0 0 0
1 1 1

for B: B, C
0 00
1 01
2 10
3 11 0

for C: A, C
0 00
1 01 0
2 10 1
3 11
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ASKeD-BN— dynamical constraints

(2) discard candidates that doesn’t match the truth table

examples of eliminated candidates
for A:

0
¬C

for B:
1
B ∨ C
B ∧ C
(A ∧ B) ∨ (¬A ∧ ¬B)

for C:
0
1
C

putative
input output

for A: C
0 0 0
1 1 1

for B: B, C
0 00
1 01
2 10
3 11 0

for C: A, C
0 00
1 01 0
2 10 1
3 11
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ASKeD-BN— dynamical constraints

(3) Optional: minimize the error (to avoid UNSAT)
#minimize{MAE@2 : mae(MAE)}. % highest priority

0

1

t

it: continuous value of i at time t
θi: binarisation threshold for i

T : # time steps
U : set of unexplained time steps

minimise the Mean Absolute Error
(ideally 0)

MAEfi =

∑
t∈Ufi

|θi − it|
T
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ASKeD-BN— minimality constraint

Find the smallest minDNF(s) among the minDNFs compatible with the
(partial) truth table

putative
input output possible guess

0 00 0 1 0 1
1 01 0 0 0 0 0
2 10 1 1 1 1 1
3 11 0 0 1 1

minDNF ¬A ∧ B ¬A B ¬A ∨ B
size 2 1 1 2

sizeconj(C, S):-conjTakenID(C);S=#sum{|V|,N:conj(C, N, V)} .
sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)} .
% N elements in conjunction C
#minimize{S@1 : sizeDNF(S)}. % lower priority
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Part II:
Apply ASKeD-BN on the structure (∼ PKN)
and the dynamics (∼ state sequence) of a CRN

1. use abstract interpretation of differential equations
→ applying a joint work done with Joachim Niehren and Cristian
Versari

2. use dedicated simulation tools
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Differential semantics of a CRN

R =

ron rcat︷ ︸︸ ︷︷ ︸︸ ︷
E + S eon←−−→

eoff

C ecat−−−−→ E + 2× P︸ ︷︷ ︸
roff

one ODE per component{
∀i ∈ V, di

dt =
∑

r∈R er × δr(i)
}

d[C]
dt = eon × 1︸ ︷︷ ︸

ron

+ eoff ×−1︸ ︷︷ ︸
roff

+ ecat ×−1︸ ︷︷ ︸
rcat
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Abstract Euler simulation of an ODE system — intuition
ȧ = 0, v̇ = a, ẋ = v

a(0) = 1, v(0) = 0, x(0) = 0

with the Euler algorithm, ∆t = 1:
i(t) = i(t−∆t) + i̇(t−∆t)×∆t

t 0 1 2 3

a 1 1 1 1
v 0 1 1 1
x 0 0 1 2

with the analytical solution:

t 0 1 2 3

a 1 1 1 1
v 0 1 1 1
x 0 1 2 3

abstraction from R+ → B :{
0 if the value is 0,

1 otherwise

abstract state sequence [a, v, x]:
100 →110 →111 � vs 100 →111 �

Abstract Euler simulation of the ODEs,
which keeps causality between the events,

to compute the abstract state transition graph
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ODE system in FOL — syntax

Signature: Σ = V ∪ R ∪ {+, ∗}

Terms: e, e′ ∈ EΣ(V ) ::= x | ρ | e+ e′ | e ∗ e′
where x ∈ V , ρ ∈ R,

Formula: φ, φ′ ∈ FΣ(V ) ::= e = e′ | ∃xφ | φ ∧ φ′ | ¬φ
where x ∈ V , x ∈ V , and e ∈ EΣ(V )

variable V = {i ∀i ∈ V } ∪ {̊i ∀i ∈ V }, ODE system = a FOL formula:

odes(R) =def

∧
A∈V

Å =
∑
r∈R

δr(A) ∗ er ∧A ≥ 0
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Creation of a new formula from the ODE formula

V = {i∀i ∈ V } ∪ {̊i ∀i ∈ V } ∪ {−→i ∀i ∈ V } ∪ {
−→
i̊ ∀i ∈ V }

φ = ∃̊v∃x̊
−→
v̊ ∃
−→
x̊ .

å = 0 ∧ v̊ = a ∧ x̊ = v

∧
−→
å = 0 ∧

−→
v̊ = −→a ∧

−→
x̊ = −→v

∧ −→a = a+ å ∧ −→v = v + v̊ ∧ −→x = x+ x̊
∧ a ≤ −→a ∧ v ≤ −→v ∧ x ≤ −→x
∧ a ≥ 0 ∧ v ≥ 0 ∧ x ≥ 0

fv(φ) = {a, v, x,−→a ,−→v ,−→x }

→ An abstract state transition graph is made from all the
assignment of the free variables that make φ true.
Domain = S = {−1, 0, 1} (but on B for the free variables)
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Resulting abstract STG for the enzymatic process

R =

ron rcat︷ ︸︸ ︷︷ ︸︸ ︷
E + S eon←−−→

eoff

C ecat−−−−→ E + 2× P︸ ︷︷ ︸
roff

Future work: run ASKeD-BN on this dynamics

23 / 28



Dynamics of a real-world CRN model, from simulation

R =

ron rcat︷ ︸︸ ︷︷ ︸︸ ︷
E + S eon←−−→

eoff

C ecat−−−−→ E + 2× P︸ ︷︷ ︸
roff

+ event, rules, constraints...
→ Systems Biology Markup Language (SBML)

(1) numerical simulation of the SBML model, (2) binarisation
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What is the Structure of CRN?

R =

ron rcat︷ ︸︸ ︷︷ ︸︸ ︷
E + S eon←−−→

eoff

C ecat−−−−→ E + 2× P︸ ︷︷ ︸
roff

There is a reaction r in which. . .
1. X is a reactant and Y disappears then X −−→ Y
2. X is an inhibitor and Y appears then X −−→ Y
3. X is a reactant or an activator and Y appears then X +−→ Y
4. X is an inhibitor and Y disappears then X +−→ Y

S

E

C

P

−

−
+

−

−
+

−

+

+

+
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Evaluation of the simulation based conversion

Nice results on our criteria, on this (very specific) application case
I IG ⊆ PKN (by construction)
I the general STG of the synthesised BNs recover a good

proportion of the transitions of the sequence.
I small number of BNs syntesised (thanks to mincard minDNF)
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Remaining Things to Investigate

When using simulation:
I overfitting to the given seq. of state? (drawback of mincard

minDNF)
I choice binarisation procedure and error measure?
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Math and computer science for a biologist: 3

Thanks for your attention.

athenais.vaginay@loria.fr
(looking for “write a PhD thesis” and “find a post-doc” advice :)))
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R =


ron = eon : S + E → C
roff = eoff :C → S + E
rcat = ecat :C → E + 2× P
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Reaction Network — Structure and Dynamics

R =

ron rcat︷ ︸︸ ︷︷ ︸︸ ︷
E + S eon←−−→

eoff

C ecat−−−−→ E + 2× P︸ ︷︷ ︸
roff

Structure:
1. If Y is a reactant and X disappears

then Y −−→ X

2. If Y is a reactant and X appears
then Y +−→ X

[Fages et al. 2008]

S

E

C

P

−

−
+

−

−
+

−

+

+

+

Dynamics:
numerical simulation of the ODEs
+ binarisation
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putative input output candidate functions

for B: B, C
0 00 0 1 0 1 0 1 0 1
1 01 0 0 1 1 0 0 1 1
2 10 0 0 0 0 1 1 1 1
3 11 0 0 0 0 0 0 0 0 0

ro
ta

ro
ta

ro
ta

ro
ta

ro
ta

ro
ta

ro
ta

ro
ta

putative input output with guess

for C: A, C
0 00 0 1 0 1
1 01 0 0 0 0 0
2 10 1 1 1 1 1
3 11 0 0 1 1

¬A ∧ B
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ASKeD-BN— minimality constraints
→ For finding the minDNF(s) given a truth table

putative input output

0 00 1
1 01 1
2 10 1
3 11 0

Several candidate DNFs, but only one minimal

¬A ∧ ¬B
∨(A ∧ ¬B)

∨(¬A ∧ B)

¬A
∨(A ∧ ¬B)

¬B
∨(¬A ∧ B)

¬A ∨ ¬B

0 1
0

1

a

b

0 1
0

1

a

b

0 1
0

1

a

b

0 1
0

1

a

b
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What I have vs what I want

Existing mathematical models (ODEs, Petri Nets, . . . ) encoded as
CRNs

CRN

R =

ron rcat︷ ︸︸ ︷︷ ︸︸ ︷
E + S eon←−−→

eoff

C ecat−−−−→ E + 2× P︸ ︷︷ ︸
roff

ODEs system

{
∀i ∈ V, di

dt
= f(t, x)

}

differential semantics of a CRN :{
∀i ∈ V, di

dt =
∑

r∈R er × δr(i)
}

d[C]
dt = eon × 1︸ ︷︷ ︸

ron

+ eoff ×−1︸ ︷︷ ︸
roff

+ ecat ×−1︸ ︷︷ ︸
rcat
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ODE system in FOL — semantics

Semantics:
the truth value ||φ||α,S ∈ B computed given an interpretation
(= a Σ-structure S + a variable assignment α : V → dom(S))

Solutions of φ on a given structure = the assignements that make
φ true: solS(φ)={α|fvφ | α : V → dom(S), ||φ||α,S = true}.
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