my PhD research so far :)

Athénaïs Vaginay, Taha Boukhobza, Malika Smaïl-Tabbone

VINO — August 27, 2022

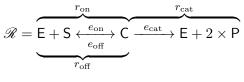
Formal modeling and reasoning about biological systems

V: set of **components** of interest (= genes, proteins...)

questions in this field:

- "How do their concentration / activity evolve in time?"
- "Can we fix broken (pathological) systems by avoiding undesirable state?"
- "Can we produce more of some desirable product of interest?"

Chemical Reaction Network (CRN) model of an enzymatic process:



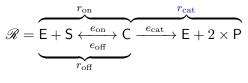
 $V = \{\mathsf{E},\mathsf{S},\mathsf{C},\mathsf{P}\}$

A reaction transforms reactants to products at a given speed with given net stoichiometry

$$\mathsf{S} \xrightarrow{e} 2 \times \mathsf{P}, \ e = \frac{e_{cat} \times \mathsf{E}_0 \times \mathsf{S}}{K_M + \mathsf{S}}$$

$$\begin{split} \delta_{r_{\rm cat}}(\mathsf{E}) &= +1\\ \delta_{r_{\rm cat}}(\mathsf{S}) &= 0\\ \delta_{r_{\rm cat}}(\mathsf{C}) &= -1\\ \delta_{r_{\rm cat}}(\mathsf{P}) &= +2 \end{split}$$

Chemical Reaction Network (CRN) model of an enzymatic process:



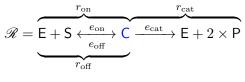
 $V = \{\mathsf{E},\mathsf{S},\mathsf{C},\mathsf{P}\}$

A reaction transforms reactants to products at a given speed with given net stoichiometry

$$\mathsf{S} \xrightarrow{e} 2 \times \mathsf{P}, \ e = \frac{e_{cat} \times \mathsf{E}_0 \times \mathsf{S}}{K_M + \mathsf{S}}$$

$$\begin{split} \delta_{r_{\rm cat}}(\mathsf{E}) &= +1\\ \delta_{r_{\rm cat}}(\mathsf{S}) &= 0\\ \delta_{r_{\rm cat}}(\mathsf{C}) &= -1\\ \delta_{r_{\rm cat}}(\mathsf{P}) &= +2 \end{split}$$

Chemical Reaction Network (CRN) model of an enzymatic process:



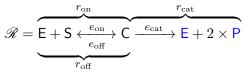
 $V = \{\mathsf{E},\mathsf{S},\mathsf{C},\mathsf{P}\}$

A reaction transforms reactants to products at a given speed with given net stoichiometry

$$\mathsf{S} \xrightarrow{e} 2 \times \mathsf{P}, \ e = \frac{e_{cat} \times \mathsf{E}_0 \times \mathsf{S}}{K_M + \mathsf{S}}$$

$$\begin{split} \delta_{r_{\rm cat}}(\mathsf{E}) &= +1 \\ \delta_{r_{\rm cat}}(\mathsf{S}) &= 0 \\ \delta_{r_{\rm cat}}(\mathsf{C}) &= -1 \\ \delta_{r_{\rm cat}}(\mathsf{P}) &= +2 \end{split}$$

Chemical Reaction Network (CRN) model of an enzymatic process:



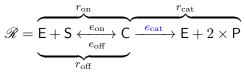
 $V = \{\mathsf{E},\mathsf{S},\mathsf{C},\mathsf{P}\}$

A reaction transforms reactants to products at a given speed with given net stoichiometry

$$\mathsf{S} \xrightarrow{e} 2 \times \mathsf{P}, \ e = \frac{e_{cat} \times \mathsf{E}_0 \times \mathsf{S}}{K_M + \mathsf{S}}$$

$$\begin{split} \delta_{r_{\rm cat}}(\mathsf{E}) &= +1\\ \delta_{r_{\rm cat}}(\mathsf{S}) &= 0\\ \delta_{r_{\rm cat}}(\mathsf{C}) &= -1\\ \delta_{r_{\rm cat}}(\mathsf{P}) &= +2 \end{split}$$

Chemical Reaction Network (CRN) model of an enzymatic process:



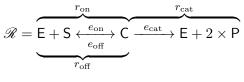
 $V = \{\mathsf{E},\mathsf{S},\mathsf{C},\mathsf{P}\}$

A reaction transforms reactants to products at a given speed with given net stoichiometry

$$\mathsf{S} \xrightarrow{e} 2 \times \mathsf{P}, \ e = \frac{e_{cat} \times \mathsf{E}_0 \times \mathsf{S}}{K_M + \mathsf{S}}$$

$$\begin{split} \delta_{r_{\rm cat}}(\mathsf{E}) &= +1\\ \delta_{r_{\rm cat}}(\mathsf{S}) &= 0\\ \delta_{r_{\rm cat}}(\mathsf{C}) &= -1\\ \delta_{r_{\rm cat}}(\mathsf{P}) &= +2 \end{split}$$

Chemical Reaction Network (CRN) model of an enzymatic process:



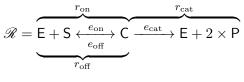
 $V = \{\mathsf{E},\mathsf{S},\mathsf{C},\mathsf{P}\}$

A reaction transforms reactants to products at a given speed with given net stoichiometry

$$\mathsf{S} \xrightarrow{e} 2 \times \mathsf{P}, \ e = \frac{e_{cat} \times \mathsf{E}_0 \times \mathsf{S}}{K_M + \mathsf{S}}$$

$$\begin{split} \delta_{r_{\rm cat}}(\mathsf{E}) &= +1 \\ \delta_{r_{\rm cat}}(\mathsf{S}) &= 0 \\ \delta_{r_{\rm cat}}(\mathsf{C}) &= -1 \\ \delta_{r_{\rm cat}}(\mathsf{P}) &= +2 \end{split}$$

Chemical Reaction Network (CRN) model of an enzymatic process:



 $V = \{\mathsf{E},\mathsf{S},\mathsf{C},\mathsf{P}\}$

A reaction transforms reactants to products at a given speed with given net stoichiometry

$$\mathsf{S} \xrightarrow{e} 2 \times \mathsf{P}, \ e = \frac{e_{cat} \times \mathsf{E}_0 \times \mathsf{S}}{K_M + \mathsf{S}}$$

$$\begin{split} \delta_{r_{\rm cat}}(\mathsf{E}) &= +1 \\ \delta_{r_{\rm cat}}(\mathsf{S}) &= 0 \\ \delta_{r_{\rm cat}}(\mathsf{C}) &= -1 \\ \delta_{r_{\rm cat}}(\mathsf{P}) &= +2 \end{split}$$

Boolean Network (BN): set of n Boolean expressions encoding for Boolean functions

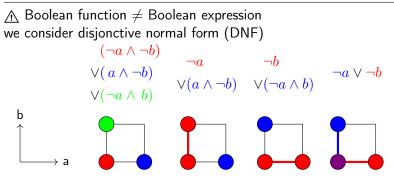
 $\{\forall i \in V, f_i : \mathbb{B}^n \to \mathbb{B}\}$

 $\mathbb{B} = \{0 | \text{inactive}, 1 | \text{active} \}$ state: a vector of \mathbb{B}^n

Boolean Network (BN): set of n Boolean expressions encoding for Boolean functions

 $\{\forall i \in V, f_i : \mathbb{B}^n \to \mathbb{B}\}$

 $\mathbb{B} = \{0 | \text{inactive}, 1 | \text{active} \}$ state: a vector of \mathbb{B}^n

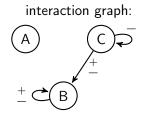


Boolean Network — an example

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} := 0\\ f_{\mathsf{B}} := (\mathsf{B} \land \neg \mathsf{C}) \lor (\neg \mathsf{B} \land \mathsf{C})\\ f_{\mathsf{C}} := \neg \mathsf{C} \end{cases}$$

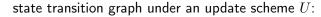
Boolean Network — an example, its structure

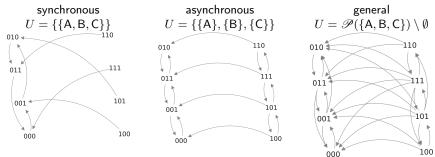
$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} := 0\\ f_{\mathsf{B}} := (\mathsf{B} \land \neg \mathsf{C}) \lor (\neg \mathsf{B} \land \mathsf{C})\\ f_{\mathsf{C}} := \neg \mathsf{C} \end{cases}$$



Boolean Network — an example, its dynamics

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} := 0\\ f_{\mathsf{B}} := (\mathsf{B} \land \neg \mathsf{C}) \lor (\neg \mathsf{B} \land \mathsf{C})\\ f_{\mathsf{C}} := \neg \mathsf{C} \end{cases}$$





My PhD project

Goal: synthetise (set of) BN compatible with a given CRN. **Why?** Because BNs are easier to understand and to work with for certain tasks (such as control).

Part I:

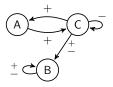
Synthesis of BN from a given dynamics and (optional) structure

Part II:

Apply the synthesis on the structure and the dynamics of a CRN

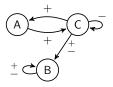
- 1. Derive the dynamics of a CRN using abstract interpretation of its ODEs
- 2. Derive the structure and dynamics of a CRN when 1. is not applicable.

structural knowledge: Prior Knowledge Network (PKN) = putative interactions between the components

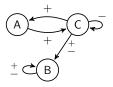


	1													
A	0	3	7	13	20	30	49	61	100	63	36	25	2	
В	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0 100 0	27	36	42	60	75	54	44	38	48	60	72	88	

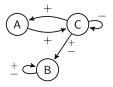
structural knowledge: Prior Knowledge Network (PKN) = putative interactions between the components



structural knowledge: Prior Knowledge Network (PKN) = putative interactions between the components

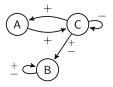


structural knowledge: Prior Knowledge Network (PKN) = putative interactions between the components



	1													
A	0	3	7	13	20	30	49	61	100	63	36	25	2	
В	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0 100 0	27	36	42	60	75	54	44	38	48	60	72	88	

structural knowledge: Prior Knowledge Network (PKN) = putative interactions between the components



									100					
t									9					
A	0 100 0	3	7	13	20	30	49	61	100	63	36	25	2	
В	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0	27	36	42	60	75	54	44	38	48	60	72	88	

Our Wishes VS Existing Approaches

- use a signed PKN + TS
- synthesise all the compatible BNs (with all the equivalent minDNFs)
- no assumption on the class of functions and on the underlying update scheme of the seq. of states.

Our Wishes VS Existing Approaches

use a signed PKN + TS

- synthesise all the compatible BNs (with all the equivalent minDNFs)
- no assumption on the class of functions and on the underlying update scheme of the seq. of states.

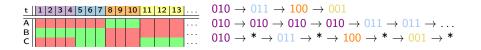
	signed PKN	all minDNF, all class		assumption on TS & config. seq.				
REVEAL	×	×	1	each timestep = sync. transition				
Best-Fit	×	×	1	each timestep $=$ sync. transition				
caspo-TS	1	🗸 moi	notonous	async. reachability				

Our Wishes VS Existing Approaches

use a signed PKN + TS

- synthesise all the compatible BNs (with all the equivalent minDNFs)
- no assumption on the class of functions and on the underlying update scheme of the seq. of states.

	signed PKN	all minDNF, all class		assumption on TS & config. seq.				
REVEAL	×	×	1	each timestep = sync. transition				
Best-Fit	×	×	1	each timestep $=$ sync. transition				
caspo-TS	1	🗸 mor	notonous	async. reachability				



Our own approach: ASKeD-BN

- 1. **local search**: generate all the possible transition functions (in minDNF) compatible with a given PKN and TS.
- 2. global assembly: produce all the possible BNs.

Our own approach: ASKeD-BN

- 1. **local search**: generate all the possible transition functions (in minDNF) compatible with a given PKN and TS.
- 2. global assembly: produce all the possible BNs.

Answer Set Programming (ASP) because...

- several tools are now developed with ASP in systems biology
- we can focus only on modeling the problem and not on the way to get the solutions
- we were told it is very fast and efficient, fun to learn,

ASKeD-BN— modeling a candidate DNF

pick a subset of conjunctions among all the possible ones (given)

% GIVEN : conj(ID, Component, Sign conj(0, a, 0). conj(0, b, 0). conj(0, c, 0). $conj(1, a, 1). conj(1, b, -1). conj(1, c, 0). % A \land \neg B$ $conj(2, a, -1). conj(1, b, 0). conj(1, c, -1). % \neg A \land \neg C$ $conj(3, a, -1). conj(3, b, -1). conj(3, c, -1). % \neg A \land \neg B \land \neg C$ $conj(4, a, 1). conj(4, b, 1). conj(4, c, 1). % A \land B \land C$...

1{conjTakenID(0..maxNbPossibleConj)}. % 3^{|V|} possibilities conjTaken(I, N, V) :- conj(I, _, _); conjTakenID(I).

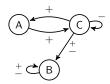
Example: taken = $\{1, 2\} \rightarrow \text{candidate} = (A \land \neg B) \lor (\neg A \land \neg C)$

ASKeD-BN- structural constraints

"it is false to select a conjunction that uses a literal that is not allowed by the $\mathsf{PKN}"$

ig(ParentID, x, V):- conjTaken(ConjID, ParentID, V); V!=0. :- ig(ParentID, x, V) ; not pkn(ParentID, x, V).

(1) Use state sequence with the parcimonious update schema possible + the PKN to build partial truth tables



010 $\xrightarrow{\{C\}}$ 011 $\xrightarrow{\{A,B,C\}}$ 100 $\xrightarrow{\{A,C\}}$ 001

(1) Use state sequence with the parcimonious update schema possible + the PKN to build partial truth tables

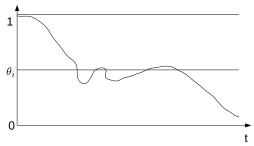
		putative input	output
	for A:	С	
	0	0	0
	1	1	1
	for B:	В, С	
+ /+	0	00	
+	1	01	
+ ⊂ (B)	2	10	
	3	11	0
$010 \xrightarrow{\{C\}} 011 \xrightarrow{\{A,B,C\}} 100 \xrightarrow{\{A,C\}} 001$	for C:	A, C	
	0	00	
	1	01	0
	2	10	1
	3	11	

(2) discard candidates that doesn't match the truth table

		putative input	output
examples of eliminated candidates for A:	for A:	С	
0	0	0	0
¬C	1	1	1
for B:	for B:	В, С	
1	0	00	
$B \lor C$	1	01	
$B\wedgeC$	2	10	
$(A \land B) \lor (\neg A \land \neg B)$	3	11	0
for C:	for C:	A, C	
1	0	00	
ſ	1	01	0
C	2	10	1
	3	11	

(3) Optional: minimize the error (to avoid UNSAT)

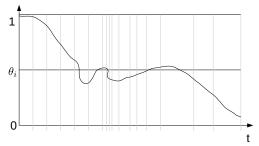
#minimize{MAE@2 : mae(MAE)}. % highest priority



 i_t : continuous value of i at time t θ_i : binarisation threshold for i

(3) Optional: minimize the error (to avoid UNSAT)

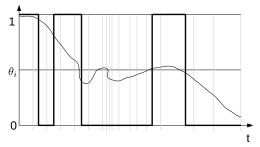
#minimize{MAE@2 : mae(MAE)}. % highest priority



- i_t : continuous value of i at time t
- θ_i : binarisation threshold for i
- T: # time steps

(3) Optional: minimize the error (to avoid UNSAT)

#minimize{MAE@2 : mae(MAE)}. % highest priority



- i_t : continuous value of i at time t
- θ_i : binarisation threshold for i
- T: # time steps

(3) Optional: minimize the error (to avoid UNSAT)

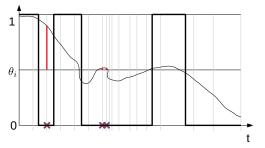
#minimize{MAE@2 : mae(MAE)}. % highest priority



- i_t : continuous value of i at time t
- θ_i : binarisation threshold for i
- T: # time steps
- \mathscr{U} : set of unexplained time steps

(3) Optional: minimize the error (to avoid UNSAT)

#minimize{MAE@2 : mae(MAE)}. % highest priority



- i_t : continuous value of i at time t
- θ_i : binarisation threshold for i
- T: # time steps
- \mathscr{U} : set of unexplained time steps

minimise the Mean Absolute Error (ideally 0)

$$\mathsf{MAE}_{f_i} = \frac{\sum_{t \in \mathscr{U}_{f_i}} |\theta_i - i_t|}{T}$$

ASKeD-BN- minimality constraint

Find the smallest minDNF(s) among the minDNFs compatible with the (partial) truth table

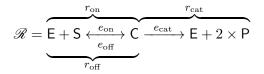
	putative input	output	possible guess							
0	00		0	1	0	1				
1	01	0	0	0	0	0				
2	10	1	1	1	1	1				
3	11		0	0	1	1				
		minDNF	$\neg A \land B$	¬Α	В	$\neg A \lor B$				
		size	2	1	1	2				

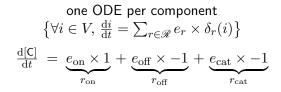
sizeconj(C, S):-conjTakenID(C);S=#sum{|V|,N:conj(C, N, V)} .
sizeDNF(S):- S=#sum{N,C: sizeconj(C, N), conjTakenID(C)} .
% N elements in conjunction C
#minimize{S@1 : sizeDNF(S)}. % lower priority

```
Part II: Apply ASKeD-BN on the structure (\sim PKN) and the dynamics (\sim state sequence) of a CRN
```

- 1. use abstract interpretation of differential equations \rightarrow applying a joint work done with Joachim Niehren and Cristian Versari
- 2. use dedicated simulation tools

Differential semantics of a CRN





$$\dot{a} = 0, \dot{v} = a, \dot{x} = v$$

 $a(0) = 1, v(0) = 0, x(0) = 0$

$$\dot{a} = 0, \dot{v} = a, \dot{x} = v$$

 $a(0) = 1, v(0) = 0, x(0) = 0$

with the Euler algorithm, $\Delta_t = 1$:						
$i(t) = i(t - \Delta_t) + \dot{i}(t - \Delta_t) \times \Delta_t$						
	t	0	1	2	3	
	а	1	1	1	1	
	v	0	1	1	1	
	Y	0	0	1	2	

$$\dot{a} = 0, \dot{v} = a, \dot{x} = v$$

 $a(0) = 1, v(0) = 0, x(0) = 0$

with the analytical solution:

t	0	1	2	3
а	1		1	1
v	0	1	1	1
х	0	1	2	3

$$\dot{a} = 0, \dot{v} = a, \dot{x} = v$$

 $a(0) = 1, v(0) = 0, x(0) = 0$

 $\begin{array}{c} \text{with the Euler algorithm, } \Delta_t = 1 \text{:} \\ i(t) = i(t - \Delta_t) + i(t - \Delta_t) \times \Delta_t \\ \hline \\ & \underbrace{ t \quad 0 \quad 1 \quad 2 \quad 3 \\ \hline \\ a \quad 1 \quad 1 \quad 1 \quad 1 \\ v \quad 0 \quad 1 \quad 1 \quad 1 \\ x \quad 0 \quad 0 \quad 1 \quad 2 \end{array} } \\ \begin{array}{c} \text{with the analytical solution:} \\ \hline \\ & \underbrace{ t \quad 0 \quad 1 \quad 2 \quad 3 \\ \hline \\ a \quad 1 \quad 1 \quad 1 \quad 1 \\ v \quad 0 \quad 1 \quad 1 \quad 1 \\ x \quad 0 \quad 0 \quad 1 \quad 2 \end{array} \right) \\ \end{array}$

abstraction from $\mathbb{R}^+ \to \mathbb{B}$:

 $\begin{cases} 0 \text{ if the value is } 0, \\ 1 \text{ otherwise} \end{cases}$

(1 otherwise

abstract state sequence [a, v, x]: 100 \rightarrow 110 \rightarrow 111 \circlearrowright vs 100 \rightarrow 111 \circlearrowright

$$\dot{a} = 0, \dot{v} = a, \dot{x} = v$$

 $a(0) = 1, v(0) = 0, x(0) = 0$

 $\begin{array}{c} \text{with the Euler algorithm, } \Delta_t = 1 \text{:} \\ i(t) = i(t - \Delta_t) + i(t - \Delta_t) \times \Delta_t \\ \hline \\ \underbrace{ t \quad 0 \quad 1 \quad 2 \quad 3}_{\text{a} \quad 1 \quad 1 \quad 1 \quad 1} \\ v \quad 0 \quad 1 \quad 1 \quad 1 \\ x \quad 0 \quad 0 \quad 1 \quad 2 \end{array} \end{array} \qquad \begin{array}{c} \text{with the analytical solution:} \\ \hline \\ \underbrace{ t \quad 0 \quad 1 \quad 2 \quad 3}_{\text{a} \quad 1 \quad 1 \quad 1 \quad 1} \\ v \quad 0 \quad 1 \quad 1 \quad 1 \\ x \quad 0 \quad 0 \quad 1 \quad 2 \end{array} \right)$

abstraction from $\mathbb{R}^+ \to \mathbb{B}$:

```
\begin{cases} 0 \text{ if the value is } 0, \\ 1 \text{ otherwise} \end{cases}
```

abstract state sequence [a, v, x]: 100 \rightarrow 110 \rightarrow 111 \circlearrowright vs 100 \rightarrow 111 \circlearrowright

Abstract Euler simulation of the ODEs, which keeps **causality** between the events, to compute the abstract state transition graph

ODE system in FOL — syntax

Signature: $\Sigma = \mathscr{V} \cup \mathbb{R} \cup \{+, *\}$

 $\begin{array}{ll} \text{Terms:} \ e,e' \in \mathscr{E}_{\varSigma}(\mathscr{V}) & ::= x \ \mid \rho \mid e+e' \mid e*e' \\ \text{where} \ x \in \mathscr{V}, \ \rho \in \mathbb{R}, \end{array}$

Formula: $\phi, \phi' \in \mathscr{F}_{\Sigma}(\mathscr{V}) ::= e = e' \mid \exists x \phi \mid \phi \land \phi' \mid \neg \phi$ where $x \in \mathscr{V}$, $x \in \mathscr{V}$, and $e \in \mathscr{E}_{\Sigma}(\mathscr{V})$

ODE system in FOL — syntax

 $\begin{array}{ll} \text{Signature: } \mathcal{\Sigma} = \mathcal{V} \cup \mathbb{R} \cup \{+, *\} \\ \text{Terms: } e, e' \in \mathscr{E}_{\Sigma}(\mathcal{V}) & ::= x \mid \rho \mid e + e' \mid e * e' \\ \text{where } x \in \mathcal{V}, \ \rho \in \mathbb{R}, \\ \text{Formula: } \phi, \phi' \in \mathscr{F}_{\Sigma}(\mathcal{V}) & ::= e = e' \mid \exists x \phi \mid \phi \land \phi' \mid \neg \phi \\ \text{where } x \in \mathcal{V}, \ x \in \mathcal{V}, \ \text{and } e \in \mathscr{E}_{\Sigma}(\mathcal{V}) \\ \end{array}$

variable $\mathscr{V} = \{i \forall i \in V\} \cup \{i \forall i \in V\}$, ODE system = a FOL formula:

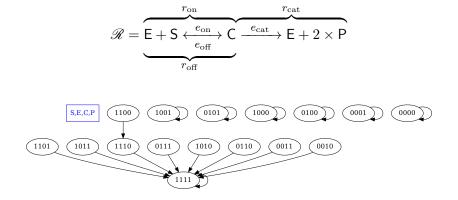
$$odes(R) =_{def} \bigwedge_{A \in V} \mathring{A} = \sum_{r \in R} \delta_r(A) * e_r \land A \ge 0$$

Creation of a new formula from the ODE formula

$$\begin{split} \mathscr{V} &= \{i \,\forall i \in V\} \cup \{\overset{\circ}{i} \,\forall i \in V\} \cup \{\overrightarrow{i} \,\forall i \in V\} \cup \{\overrightarrow{i} \,\forall i \in V\} \cup \{\overrightarrow{i} \,\forall i \in V\} \\ \phi &= \exists \overset{\circ}{v} \exists \vec{x} . \\ \overset{a}{=} 0 & \wedge \overset{\circ}{v} = a & \wedge \overset{\circ}{x} = v \\ \wedge \overset{\circ}{a} = 0 & \wedge \overset{\circ}{v} = \overrightarrow{a} & \wedge \overset{\circ}{x} = \overrightarrow{v} \\ \wedge \overset{\circ}{a} = a + \overset{\circ}{a} & \wedge \overrightarrow{v} = v + \overset{\circ}{v} & \wedge \overrightarrow{x} = x + \overset{\circ}{x} \\ \wedge a \leq \overrightarrow{a} & \wedge v \leq \overrightarrow{v} & \wedge x \leq \overrightarrow{x} \\ \wedge a \geq 0 & \wedge v \geq 0 & \wedge x \geq 0 \end{split}$$

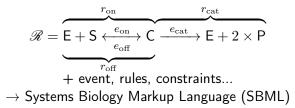
 $fv(\phi) = \{a, v, x, \overrightarrow{a}, \overrightarrow{v}, \overrightarrow{x}\}$

 \rightarrow An abstract state transition graph is made from all the assignment of the free variables that make ϕ true. Domain = $\mathbb{S} = \{-1, 0, 1\}$ (but on \mathbb{B} for the free variables) Resulting abstract STG for the enzymatic process

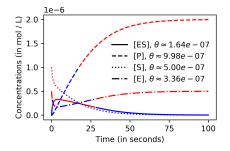


Future work: run ASKeD-BN on this dynamics

Dynamics of a real-world CRN model, from simulation



(1) numerical simulation of the SBML model, (2) binarisation

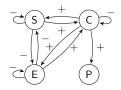


What is the Structure of CRN?

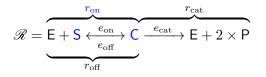
$$\mathscr{R} = \underbrace{\overbrace{\mathsf{E} + \mathsf{S} \xleftarrow[e_{\mathrm{off}}]{e_{\mathrm{off}}} \mathsf{C}}^{r_{\mathrm{oat}}} \mathsf{C} \xrightarrow[e_{\mathrm{cat}}]{e_{\mathrm{cat}}} \mathsf{E} + 2 \times \mathsf{P}}_{r_{\mathrm{off}}}$$

There is a reaction r in which...

- 1. X is a reactant and Y disappears **then** $X \xrightarrow{-} Y$
- 2. X is an inhibitor and Y appears **then** $X \xrightarrow{-} Y$
- 3. X is a reactant or an activator and Y appears **then** X $\xrightarrow{+}$ Y
- 4. X is an inhibitor and Y disappears **then** $X \xrightarrow{+} Y$

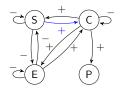


What is the Structure of CRN?



There is a reaction r in which...

- 1. X is a reactant and Y disappears **then** $X \xrightarrow{-} Y$
- 2. X is an inhibitor and Y appears **then** $X \xrightarrow{-} Y$
- 3. X is a reactant or an activator and Y appears **then** X $\xrightarrow{+}$ Y
- 4. X is an inhibitor and Y disappears **then** $X \xrightarrow{+} Y$



Evaluation of the simulation based conversion

Nice results on our criteria, on this (very specific) application case

- IG \subseteq PKN (by construction)
- the general STG of the synthesised BNs recover a good proportion of the transitions of the sequence.
- small number of BNs syntesised (thanks to mincard minDNF)

Remaining Things to Investigate

When using simulation:

- overfitting to *the* given seq. of state? (drawback of mincard minDNF)
- choice binarisation procedure and error measure?

Math and computer science for a biologist: \checkmark

Thanks for your attention.

athenais.vaginay@loria.fr (looking for "write a PhD thesis" and "find a post-doc" advice :)))

$$\mathscr{R} = \begin{cases} r_{\rm on} = e_{\rm on} & :\mathsf{S} + \mathsf{E} & \to \mathsf{C} \\ r_{\rm off} = e_{\rm off} & :\mathsf{C} & \to \mathsf{S} + \mathsf{E} \\ r_{\rm cat} = e_{\rm cat} & :\mathsf{C} & \to \mathsf{E} + 2 \times \mathsf{P} \end{cases}$$

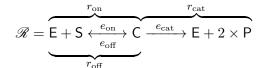
$$\mathscr{R} = \begin{cases} r_{\rm on} = e_{\rm on} & :\mathsf{S} + \mathsf{E} & \to \mathsf{C} \\ r_{\rm off} = e_{\rm off} & :\mathsf{C} & \to \mathsf{S} + \mathsf{E} \\ r_{\rm cat} = e_{\rm cat} & :\mathsf{C} & \to \mathsf{E} + 2 \times \mathsf{P} \end{cases}$$

$$\mathscr{R} = \begin{cases} r_{\rm on} = e_{\rm on} & :\mathsf{S} + \mathsf{E} & \to \mathsf{C} \\ r_{\rm off} = e_{\rm off} & :\mathsf{C} & \to \mathsf{S} + \mathsf{E} \\ r_{\rm cat} = e_{\rm cat} & :\mathsf{C} & \to \mathsf{E} + 2 \times \mathsf{P} \end{cases}$$

$$\mathscr{R} = \begin{cases} r_{\rm on} = e_{\rm on} & :\mathsf{S} + \mathsf{E} & \to \mathsf{C} \\ r_{\rm off} = e_{\rm off} & :\mathsf{C} & \to \mathsf{S} + \mathsf{E} \\ r_{\rm cat} = e_{\rm cat} & :\mathsf{C} & \to \mathsf{E} + 2 \times \mathsf{P} \end{cases}$$

$$\mathscr{R} = \begin{cases} r_{\rm on} = e_{\rm on} & :\mathsf{S} + \mathsf{E} & \to \mathsf{C} \\ r_{\rm off} = e_{\rm off} & :\mathsf{C} & \to \mathsf{S} + \mathsf{E} \\ r_{\rm cat} = e_{\rm cat} & :\mathsf{C} & \to \mathsf{E} + 2 \times \mathsf{P} \end{cases}$$

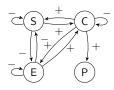
Reaction Network — Structure and Dynamics



Structure:

- 1. If Y is a reactant and X disappears then Y $\xrightarrow{-}$ X
- 2. If Y is a reactant and X appears then Y $\xrightarrow{+}$ X

[Fages et al. 2008]



Dynamics: numerical simulation of the ODEs + binarisation

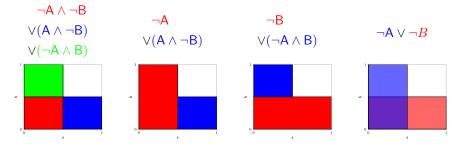
	putative input	output	candidate functions							
for B:	B, C									
0	00		0	1	0	1	0	1	0	1
1	01		0	0	1	1	0	0	1	1
2	10		0	0	0	0	1	1	1	1
3	11	0	0	0	0	0	0	0	0	0
			rota	rota	rota	rota	rota	rota	rota	rota
	putative input	output	with guess							
for C:	A, C									
0	00			0	1	. 0	1			
1	01	0		0	С) ()	0			
2	10	1		1	1	. 1	1			
3	11			0	С) 1	1			
			¬₽	$A \wedge E$	3					

ASKeD-BN- minimality constraints

 \rightarrow For finding the minDNF(s) given a truth table

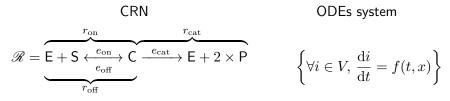
	putative input	output
0	00	1
1	01	1
2	10	1
3	11	0

Several candidate DNFs, but only one minimal



What I have vs what I want

Existing mathematical models (ODEs, Petri Nets, \ldots) encoded as CRNs



$$\begin{array}{l} \text{differential semantics of a CRN}:\\ \left\{\forall i \in V, \ \frac{\mathrm{d}i}{\mathrm{d}t} = \sum_{r \in \mathscr{R}} e_r \times \delta_r(i)\right\}\\ \frac{\mathrm{d}[\mathsf{C}]}{\mathrm{d}t} \ = \ \underbrace{e_{\mathrm{on}} \times 1}_{r_{\mathrm{on}}} + \underbrace{e_{\mathrm{off}} \times -1}_{r_{\mathrm{off}}} + \underbrace{e_{\mathrm{cat}} \times -1}_{r_{\mathrm{cat}}} \end{array}$$

Semantics:

the truth value $||\phi||^{\alpha,S} \in \mathbb{B}$ computed given an interpretation (= a Σ -structure S + a variable assignment $\alpha : \mathscr{V} \to dom(S)$)

Solutions of ϕ on a given structure = the assignments that make ϕ true: $sol^{S}(\phi) = \{ \alpha_{|fv\phi} \mid \alpha : \mathscr{V} \to dom(S), \ ||\phi||^{\alpha,S} = true \}.$

Athénaïs Vaginay, Taha Boukhobza, Malika Smaïl-Tabbone. **Automatic Synthesis of Boolean Networks from Biological Knowledge and Data.** OLA21: International Conference on Optimization and Learning, Jun 2021, online.

Joachim Niehren, Athénaïs Vaginay, Cristian Versari. **Abstract Simulation of Reaction Networks via Boolean Networks**. CMSB2022: 20th International Conference on Computational Methods in Systems Biology, Sep 2022, Bucarest, Romania.

Athénaïs Vaginay, Taha Boukhobza, Malika Smaïl-Tabbone. **From quantitative SBML models to boolean networks**. CNA2021: 10th International Conference on Complex Networks and their Applications, Nov 2021, Madrid, Spain.