my PhD research so far :)

Athénaïs Vaginay, Taha Boukhobza, Malika Smaïl-Tabbone

$$
\text { VINO — August 27, } 2022
$$

My field: Systems Biology

Formal modeling and reasoning about biological systems
V : set of components of interest (= genes, proteins...)
questions in this field:

- "How do their concentration / activity evolve in time?"
- "Can we fix broken (pathological) systems by avoiding undesirable state?"
- "Can we produce more of some desirable product of interest?"

What I have vs what I want

Chemical Reaction Network (CRN) model of an enzymatic process:

$$
\begin{aligned}
& \mathscr{R}=\underbrace{\overbrace{\mathrm{E}+\mathrm{S}}^{\mathrm{S}_{e_{\text {onf }}}^{r_{\text {on }}}} \mathrm{C}}_{r_{\text {off }}} \xrightarrow{e_{\text {cat }}} \mathrm{E}+2 \times \mathrm{P} \\
& V=\{\mathrm{E}, \mathrm{~S}, \mathrm{C}, \mathrm{P}\}
\end{aligned}
$$

A reaction transforms reactants to products at a given speed with given net stoichiometry
speed: function of the reactants, and some optional modifiers (activators and/or inhibitors)
$\mathrm{S} \xrightarrow{e} 2 \times \mathrm{P}, e=\frac{e_{c a t} \times \mathrm{E}_{0} \times \mathrm{S}}{K_{M}+\mathrm{S}}$

$$
\begin{aligned}
& \delta_{r_{\text {cat }}}(\mathrm{E})=+1 \\
& \delta_{r_{\text {cat }}}(\mathrm{S})=0 \\
& \delta_{r_{\text {cat }}}(\mathrm{C})=-1 \\
& \delta_{r_{\text {cat }}}(\mathrm{P})=+2
\end{aligned}
$$

What I have vs what I want

Chemical Reaction Network (CRN) model of an enzymatic process:

$$
\begin{gathered}
\mathscr{R}=\underbrace{r_{\text {cat }}}_{\underbrace{\overbrace{\mathrm{E}+\mathrm{S}}^{\mathrm{C}_{e_{\text {of }}}} \mathrm{C}}_{r_{\text {off }}} \overbrace{\text { cont }}^{r_{\text {cat }}} \mathrm{E}+2 \times \mathrm{P}} \\
V=\{\mathrm{E}, \mathrm{~S}, \mathrm{C}, \mathrm{P}\}
\end{gathered}
$$

A reaction transforms reactants to products at a given speed with given net stoichiometry
speed: function of the reactants,
and some optional modifiers
(activators and/or inhibitors)
$\mathrm{S} \xrightarrow{e} 2 \times \mathrm{P}, e=\frac{e_{c a t} \times \mathrm{E}_{0} \times \mathrm{S}}{K_{M}+\mathrm{S}}$

$$
\begin{aligned}
& \delta_{r_{\text {cat }}}(\mathrm{E})=+1 \\
& \delta_{r_{\text {cat }}}(\mathrm{S})=0 \\
& \delta_{r_{\text {cat }}}(\mathrm{C})=-1 \\
& \delta_{r_{\text {cat }}}(\mathrm{P})=+2
\end{aligned}
$$

What I have vs what I want

Chemical Reaction Network (CRN) model of an enzymatic process:

$$
\begin{gathered}
\mathscr{R}=\underbrace{r_{\text {cat }}}_{\underbrace{}_{r_{\text {off }}} \overbrace{\mathrm{E}+\mathrm{S} \underset{e_{\text {orn }}}{r_{\text {on }}} \mathrm{C}}^{e_{\text {cat }}} \mathrm{E}_{\mathrm{c}}^{\mathrm{E}}+2 \times \mathrm{P}, \mathrm{~S}, \mathrm{C}, \mathrm{P}\}}
\end{gathered}
$$

A reaction transforms reactants to products at a given speed with given net stoichiometry
speed: function of the reactants, and some optional modifiers (activators and/or inhibitors)
$\mathrm{S} \xrightarrow{e} 2 \times \mathrm{P}, e=\frac{e_{c a t} \times \mathrm{E}_{0} \times \mathrm{S}}{K_{M}+\mathrm{S}}$

$$
\begin{aligned}
& \delta_{r_{\text {cat }}}(\mathrm{E})=+1 \\
& \delta_{r_{\text {cat }}}(\mathrm{S})=0 \\
& \delta_{r_{\text {cat }}}(\mathrm{C})=-1 \\
& \delta_{r_{\text {cat }}}(\mathrm{P})=+2
\end{aligned}
$$

What I have vs what I want

Chemical Reaction Network (CRN) model of an enzymatic process:

$$
\begin{gathered}
\mathscr{R}=\underbrace{r_{\text {on }}}_{\underbrace{}_{r_{\text {off }}} \overbrace{\mathrm{E}+\mathrm{S}}^{\mathrm{e}_{e_{\text {of }}}} \mathrm{C}}{\left.\stackrel{e_{\text {cat }}}{\mathrm{E}} \mathrm{E}+2 \times \mathrm{P}, \mathrm{~S}, \mathrm{C}, \mathrm{P}\right\}}_{r_{\text {cat }}}
\end{gathered}
$$

A reaction transforms reactants to products at a given speed with given net stoichiometry
speed: function of the reactants, and some optional modifiers (activators and/or inhibitors)
$\mathrm{S} \xrightarrow{e} 2 \times \mathrm{P}, e=\frac{e_{c a t} \times \mathrm{E}_{0} \times \mathrm{S}}{K_{M}+\mathrm{S}}$

$$
\begin{aligned}
& \delta_{r_{\text {cat }}}(\mathrm{E})=+1 \\
& \delta_{r_{\text {cat }}}(\mathrm{S})=0 \\
& \delta_{r_{\text {cat }}}(\mathrm{C})=-1 \\
& \delta_{r_{\text {cat }}}(\mathrm{P})=+2
\end{aligned}
$$

What I have vs what I want

Chemical Reaction Network (CRN) model of an enzymatic process:

$$
\begin{gathered}
\mathscr{R}=\underbrace{r_{\text {on }}}_{\underbrace{}_{r_{\text {off }}} \overbrace{\mathrm{E}+\mathrm{S}}^{\mathrm{e}_{e_{\text {of }}}} \mathrm{C}}{\left.\stackrel{e_{\text {cat }}}{\mathrm{E}} \mathrm{E}+2 \times \mathrm{P}, \mathrm{~S}, \mathrm{C}, \mathrm{P}\right\}}_{r_{\text {cat }}}
\end{gathered}
$$

A reaction transforms reactants to products at a given speed with given net stoichiometry
speed: function of the reactants, and some optional modifiers (activators and/or inhibitors)
$\mathrm{S} \xrightarrow{e} 2 \times \mathrm{P}, e=\frac{e_{c a t} \times \mathrm{E}_{0} \times \mathrm{S}}{K_{M}+\mathrm{S}}$

$$
\begin{aligned}
& \delta_{r_{\text {cat }}}(\mathrm{E})=+1 \\
& \delta_{r_{\text {cat }}}(\mathrm{S})=0 \\
& \delta_{r_{\text {cat }}}(\mathrm{C})=-1 \\
& \delta_{r_{\text {cat }}}(\mathrm{P})=+2
\end{aligned}
$$

What I have vs what I want

Chemical Reaction Network (CRN) model of an enzymatic process:

$$
\begin{gathered}
\mathscr{R}=\underbrace{r_{\text {on }}}_{\underbrace{}_{r_{\text {off }}} \overbrace{\mathrm{E}+\mathrm{S}}^{\mathrm{e}_{e_{\text {of }}}} \mathrm{C}}{\left.\stackrel{e_{\text {cat }}}{\mathrm{V}} \mathrm{E}+2 \times \mathrm{P}, \mathrm{~S}, \mathrm{C}, \mathrm{P}\right\}}_{r_{\text {cat }}}
\end{gathered}
$$

A reaction transforms reactants to products at a given speed with given net stoichiometry
speed: function of the reactants, and some optional modifiers (activators and/or inhibitors)
$\mathrm{S} \xrightarrow{e} 2 \times \mathrm{P}, e=\frac{e_{c a t} \times \mathrm{E}_{0} \times \mathrm{S}}{K_{M}+\mathrm{S}}$

$$
\begin{aligned}
& \delta_{r_{\text {cat }}}(\mathrm{E})=+1 \\
& \delta_{r_{\text {cat }}}(\mathrm{S})=0 \\
& \delta_{r_{\text {cat }}}(\mathrm{C})=-1 \\
& \delta_{r_{\text {cat }}}(\mathrm{P})=+2
\end{aligned}
$$

What I have vs what I want

Chemical Reaction Network (CRN) model of an enzymatic process:

$$
\begin{aligned}
& \mathscr{R}=\underbrace{\overbrace{\mathrm{E}+\mathrm{S}}^{\mathrm{S}_{e_{\text {onf }}}^{r_{\text {on }}}} \mathrm{C}}_{r_{\text {off }}} \xrightarrow{e_{\text {cat }}} \mathrm{E}+2 \times \mathrm{P} \\
& V=\{\mathrm{E}, \mathrm{~S}, \mathrm{C}, \mathrm{P}\}
\end{aligned}
$$

A reaction transforms reactants to products at a given speed with given net stoichiometry
speed: function of the reactants, and some optional modifiers (activators and/or inhibitors)
$\mathrm{S} \xrightarrow{e} 2 \times \mathrm{P}, e=\frac{e_{c a t} \times \mathrm{E}_{0} \times \mathrm{S}}{K_{M}+\mathrm{S}}$

$$
\begin{aligned}
& \delta_{r_{\text {cat }}}(\mathrm{E})=+1 \\
& \delta_{r_{\text {cat }}}(\mathrm{S})=0 \\
& \delta_{r_{\text {cat }}}(\mathrm{C})=-1 \\
& \delta_{r_{\text {cat }}}(\mathrm{P})=+2
\end{aligned}
$$

What I have vs what I want

Boolean Network (BN): set of n Boolean expressions encoding for Boolean functions

$$
\left\{\forall i \in V, f_{i}: \mathbb{B}^{n} \rightarrow \mathbb{B}\right\}
$$

$\mathbb{B}=\{0 /$ inactive, $1 /$ active $\}$
state: a vector of \mathbb{B}^{n}

What I have vs what I want

Boolean Network (BN): set of n Boolean expressions encoding for Boolean functions

$$
\left\{\forall i \in V, f_{i}: \mathbb{B}^{n} \rightarrow \mathbb{B}\right\}
$$

$\mathbb{B}=\{0 /$ inactive, $1 /$ active $\}$
state: a vector of \mathbb{B}^{n}
\triangle Boolean function \neq Boolean expression we consider disjonctive normal form (DNF)

$$
\begin{array}{llc}
& (\neg a \wedge \neg b) & \\
\vee(a \wedge \neg b) & \neg b & \neg b \\
\vee(\neg a \wedge b) & \vee(a \wedge \neg b) & \vee(\neg a \wedge b)
\end{array}
$$

$$
\neg a \vee \neg b
$$

b

Boolean Network - an example

$$
\mathscr{B}=\left\{\begin{array}{l}
f_{\mathrm{A}}:=0 \\
f_{\mathrm{B}}:=(\mathrm{B} \wedge \neg \mathrm{C}) \vee(\neg \mathrm{B} \wedge \mathrm{C}) \\
f_{\mathrm{C}}:=\neg \mathrm{C}
\end{array}\right.
$$

Boolean Network - an example, its structure

$$
\mathscr{B}=\left\{\begin{array}{l}
f_{\mathrm{A}}:=0 \\
f_{\mathrm{B}}:=(\mathrm{B} \wedge \neg \mathrm{C}) \vee(\neg \mathrm{B} \wedge \mathrm{C}) \\
f_{\mathrm{C}}:=\neg \mathrm{C}
\end{array}\right.
$$

interaction graph:

Boolean Network - an example, its dynamics

$$
\mathscr{B}=\left\{\begin{array}{l}
f_{\mathrm{A}}:=0 \\
f_{\mathrm{B}}:=(\mathrm{B} \wedge \neg \mathrm{C}) \vee(\neg \mathrm{B} \wedge \mathrm{C}) \\
f_{\mathrm{C}}:=\neg \mathrm{C}
\end{array}\right.
$$

state transition graph under an update scheme U :

general $U=\mathscr{P}(\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}) \backslash \emptyset$

My PhD project

Goal: synthetise (set of) BN compatible with a given CRN. Why? Because BNs are easier to understand and to work with for certain tasks (such as control).

Part I:
Synthesis of BN from a given dynamics and (optional) structure
Part II:
Apply the synthesis on the structure and the dynamics of a CRN

1. Derive the dynamics of a CRN using abstract interpretation of its ODEs
2. Derive the structure and dynamics of a CRN when 1 . is not applicable.

Structural Knowledge and Dynamical Data

structural knowledge: Prior Knowledge Network (PKN)
$=$ putative interactions between the components

dynamical data: Time Series (TS) = concentrations of the components over time, sequence of states

t	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots
A	0	3	7	13	20	30	49	61	100	63	36	25	2	\ldots
B	100	86	64	57	54	53	51	49	45	37	33	28	22	\ldots
C	0	27	36	42	60	75	54	44	38	48	60	72	88	\ldots

Structural Knowledge and Dynamical Data

structural knowledge: Prior Knowledge Network (PKN)
$=$ putative interactions between the components

dynamical data: Time Series (TS) = concentrations of the components over time, sequence of states

t	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots
A	0	3	7	13	20	30	49	61	100	63	36	25	2	\ldots
B	100	86	64	57	54	53	51	49	45	37	33	28	22	\ldots
C	0	27	36	42	60	75	54	44	38	48	60	72	88	\ldots

Structural Knowledge and Dynamical Data

structural knowledge: Prior Knowledge Network (PKN)
$=$ putative interactions between the components

dynamical data: Time Series (TS) = concentrations of the components over time, sequence of states

t	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots
A	0	3	7	13	20	30	49	61	100	63	36	25	2	\ldots
B	100	86	64	57	54	53	51	49	45	37	33	28	22	\ldots
C	0	27	36	42	60	75	54	44	38	48	60	72	88	\ldots

Structural Knowledge and Dynamical Data

structural knowledge: Prior Knowledge Network (PKN)
$=$ putative interactions between the components

dynamical data: Time Series (TS) = concentrations of the components over time, sequence of states

t	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots
A	0	3	7	13	20	30	49	61	100	63	36	25	2	\ldots
B	100	86	64	57	54	53	51	49	45	37	33	28	22	\ldots
C	0	27	36	42	60	75	54	44	38	48	60	72	88	\ldots

Structural Knowledge and Dynamical Data

structural knowledge: Prior Knowledge Network (PKN)
$=$ putative interactions between the components

dynamical data: Time Series (TS) = concentrations of the components over time, sequence of states

			010			11			100			001		
t	1	2	3	4	5	6	7	8		10		12	13	
A	0	3	7	13	20	30	49	61	100	63	36	25	2	
B	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0	27	36	42	60	75	54	44	38	48	60	2	88	

Our Wishes VS Existing Approaches

- use a signed PKN + TS
- synthesise all the compatible BNs (with all the equivalent minDNFs)
- no assumption on the class of functions and on the underlying update scheme of the seq. of states.

Our Wishes VS Existing Approaches

- use a signed PKN + TS
- synthesise all the compatible BNs (with all the equivalent minDNFs)
- no assumption on the class of functions and on the underlying update scheme of the seq. of states.

	signed PKN	all minDNF, all class	assumption on TS \& config. seq.	
REVEAL	X	X	\checkmark	each timestep $=$ sync. transition
Best-Fit	X	X	\checkmark	each timestep $=$ sync. transition
caspo-TS	\checkmark	\checkmark	monotonous	async. reachability

Our Wishes VS Existing Approaches

- use a signed PKN + TS
- synthesise all the compatible BNs (with all the equivalent minDNFs)
- no assumption on the class of functions and on the underlying update scheme of the seq. of states.

	signed PKN	all minDNF, all class	assumption on TS \& config. seq.														
REVEAL	X	$x \quad \checkmark$	each timestep $=$ sync. transition														
Best-Fit	x	\checkmark	each timestep $=$ sync. transition														
caspo-TS	\checkmark	\checkmark monotonous	async. reachability														
\|	1	2	3	4	5	6	7	8	9	10	11	12	13	.			$010 \rightarrow 011 \rightarrow 100 \rightarrow 001$
			$\rightarrow 010 \rightarrow 010 \rightarrow 011 \rightarrow 011 \rightarrow$														
		$\because 010 \rightarrow * \rightarrow$	$011 \rightarrow^{*} \rightarrow 100 \rightarrow^{*} \rightarrow 001 \rightarrow^{*}$														

Our own approach: ASKeD-BN

1. local search: generate all the possible transition functions (in minDNF) compatible with a given PKN and TS.
2. global assembly: produce all the possible BNs.

Our own approach: ASKeD-BN

1. local search: generate all the possible transition functions (in minDNF) compatible with a given PKN and TS.
2. global assembly: produce all the possible BNs.

Answer Set Programming (ASP) because...

- several tools are now developed with ASP in systems biology
- we can focus only on modeling the problem and not on the way to get the solutions
- we were told it is very fast and efficient, fun to learn, ...

ASKeD-BN— modeling a candidate DNF

pick a subset of conjunctions among all the possible ones (given)

```
% GIVEN : conj(ID, Component, Sign}
conj(0, a, 0). conj(0, b, 0). conj(0, c, 0).
conj(1, a, 1). conj(1, b,-1). conj(1, c, 0). % A A \negB
conj(2, a, -1). conj(1, b, 0). conj(1, c, -1). % \negA^\negC
conj(3, a, -1). conj(3, b,-1). conj(3, c, -1).% \negA\wedge\negB\wedge\negC
conj(4, a, 1). conj(4, b, 1). conj(4, c, 1).% A^ B^ C
```

1\{conjTakenID(0..maxNbPossibleConj)\}. \% $3^{|V|}$ possibilities
conjTaken(I, N, V) :- conj(I, _, _); conjTakenID(I).

Example: taken $=\{1,2\} \rightarrow$ candidate $=(\mathrm{A} \wedge \neg \mathrm{B}) \vee(\neg \mathrm{A} \wedge \neg \mathrm{C})$

ASKeD-BN- structural constraints

interaction graph

"it is false to select a conjunction that uses a literal that is not allowed by the PKN"
ig(ParentID, x, V):- conjTaken(ConjID, ParentID, V); V!=0.
:- ig(ParentID, x, V) ; not pkn(ParentID, x, V).

ASKeD-BN— dynamical constraints

(1) Use state sequence with the parcimonious update schema possible + the PKN to build partial truth tables

$010 \xrightarrow{\{C\}} 011 \xrightarrow{\{A, B, C\}} 100 \xrightarrow{\{A, C\}} 001$

ASKeD-BN— dynamical constraints

(1) Use state sequence with the parcimonious update schema possible + the PKN to build partial truth tables

ASKeD-BN— dynamical constraints

(2) discard candidates that doesn't match the truth table
examples of eliminated candidates for A:
${ }_{\neg}^{0} \mathrm{C}$

putative for A:		
input	output	
0	0	0
1	1	1
for B:	B, C	
0	00	
1	01	
2	10	
3	11	0
for C:	A, C	
0	00	
1	01	0
2	10	1
3	11	

ASKeD-BN— dynamical constraints

(3) Optional: minimize the error (to avoid UNSAT) \#minimize\{MAE®2 : mae(MAE)\}. \% highest priority

i_{t} : continuous value of i at time t
θ_{i} : binarisation threshold for i

ASKeD-BN— dynamical constraints

(3) Optional: minimize the error (to avoid UNSAT) \#minimize\{MAE®2 : mae(MAE)\}. \% highest priority

i_{t} : continuous value of i at time t
θ_{i} : binarisation threshold for i
T : \# time steps

ASKeD-BN— dynamical constraints

(3) Optional: minimize the error (to avoid UNSAT) \#minimize\{MAE@2 : mae(MAE)\}. \% highest priority

i_{t} : continuous value of i at time t
θ_{i} : binarisation threshold for i
T : \# time steps

ASKeD-BN— dynamical constraints

(3) Optional: minimize the error (to avoid UNSAT) \#minimize\{MAE®2 : mae(MAE)\}. \% highest priority

i_{t} : continuous value of i at time t
θ_{i} : binarisation threshold for i
T : \# time steps
\mathscr{U} : set of unexplained time steps

ASKeD-BN— dynamical constraints

(3) Optional: minimize the error (to avoid UNSAT)

$$
\text { \#minimize\{MAE®2 : mae(MAE)\}. \% highest priority }
$$

i_{t} : continuous value of i at time t θ_{i} : binarisation threshold for i

T : \# time steps

\mathscr{U} : set of unexplained time steps
minimise the Mean Absolute Error (ideally 0)

$$
\mathrm{MAE}_{f_{i}}=\frac{\sum_{t \in \mathscr{U}_{f_{i}}}\left|\theta_{i}-i_{t}\right|}{T}
$$

ASKeD-BN- minimality constraint

Find the smallest minDNF(s) among the minDNFs compatible with the (partial) truth table

	putative input	output	possible guess			
0	00		0	1	0	1
1	01	0	0	0	0	0
2	10	1	1	1	1	1
3	11		0	0	1	1
minDNF			$\neg \mathrm{A} \wedge \mathrm{B}$	$\neg \mathrm{A}$	B	$\begin{gathered} \neg A \vee B \\ 2 \end{gathered}$
		size	2	1	1	

sizeconj(C, S):-conjTakenID(C);S=\#sum\{|V|,N:conj(C, N, V)\} . sizeDNF(S):- S=\#sum\{N,C: sizeconj(C, N), conjTakenID(C)\}.
\% N elements in conjunction C
\#minimize\{S@1 : sizeDNF(S)\}. \% lower priority

Part II:
 Apply ASKeD-BN on the structure (\sim PKN) and the dynamics (\sim state sequence) of a CRN

1. use abstract interpretation of differential equations \rightarrow applying a joint work done with Joachim Niehren and Cristian Versari
2. use dedicated simulation tools

Differential semantics of a CRN

$$
\begin{gathered}
\text { one ODE per component } \\
\left\{\forall i \in V, \frac{\mathrm{~d} i}{\mathrm{~d} t}=\sum_{r \in \mathscr{R}} e_{r} \times \delta_{r}(i)\right\} \\
\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{d} t}=\underbrace{e_{\mathrm{on}} \times 1}_{r_{\mathrm{on}}}+\underbrace{e_{\text {off }} \times-1}_{r_{\text {off }}}+\underbrace{e_{\mathrm{cat}} \times-1}_{r_{\mathrm{cat}}}
\end{gathered}
$$

Abstract Euler simulation of an ODE system - intuition

$$
\begin{gathered}
\dot{a}=0, \dot{v}=a, \dot{x}=v \\
a(0)=1, v(0)=0, x(0)=0
\end{gathered}
$$

Abstract Euler simulation of an ODE system - intuition

$$
\begin{gathered}
\dot{a}=0, \dot{v}=a, \dot{x}=v \\
a(0)=1, v(0)=0, x(0)=0
\end{gathered}
$$

with the Euler algorithm, $\Delta_{t}=1$:

$$
\begin{aligned}
& i(t)=i\left(t-\Delta_{t}\right)+\dot{i}\left(t-\Delta_{t}\right) \times \Delta_{t} \\
& \begin{array}{lllll}
\mathrm{t} & 0 & 1 & 2 & 3
\end{array} \\
& \begin{array}{ccccc}
\mathrm{a} & 1 & 1 & 1 & 1 \\
\mathrm{v} & 0 & 1 & 1 & 1 \\
\times & 0 & 0 & 1 & 2
\end{array}
\end{aligned}
$$

Abstract Euler simulation of an ODE system - intuition

$$
\begin{gathered}
\dot{a}=0, \dot{v}=a, \dot{x}=v \\
a(0)=1, v(0)=0, x(0)=0
\end{gathered}
$$

with the Euler algorithm, $\Delta_{t}=1$:

$$
\begin{aligned}
& i(t)=i\left(t-\Delta_{t}\right)+\dot{i}\left(t-\Delta_{t}\right) \times \Delta_{t} \\
& \begin{array}{lllll}
\mathrm{t} & 0 & 1 & 2 & 3
\end{array} \\
& \begin{array}{ccccc}
\mathrm{a} & 1 & 1 & 1 & 1 \\
\mathrm{v} & 0 & 1 & 1 & 1 \\
\times & 0 & 0 & 1 & 2
\end{array}
\end{aligned}
$$ with the analytical solution:

t	0	1	2	3
a	1	1	1	1
v	0	1	1	1
x	0	1	2	3

Abstract Euler simulation of an ODE system - intuition

$$
\begin{gathered}
\dot{a}=0, \dot{v}=a, \dot{x}=v \\
a(0)=1, v(0)=0, x(0)=0
\end{gathered}
$$

with the Euler algorithm, $\Delta_{t}=1$:

$$
\left.i(t)=i\left(t-\Delta_{t}\right)+\dot{i}\left(t-\Delta_{t}\right) \times \Delta_{t} \quad \begin{array}{cccc}
\mathrm{t} & 0 & 1 & 2 \\
\hline & 3 \\
\hline \mathrm{a} & 1 & 1 & 1 \\
\mathrm{v} & 0 & 1 & 1 \\
\mathrm{x} & 0 & 0 & 1 \\
& 2
\end{array} \quad \begin{array}{c}
\mathrm{t} \\
\end{array}\right)
$$

$$
\text { abstraction from } \mathbb{R}^{+} \rightarrow \mathbb{B}:
$$

$$
\left\{\begin{array}{l}
0 \text { if the value is } 0 \\
1 \text { otherwise }
\end{array}\right.
$$

$$
\text { abstract state sequence }[a, v, x] \text { : }
$$

$$
100 \rightarrow 110 \rightarrow 111 \circlearrowright \quad \text { vs } \quad 100 \rightarrow 111 \circlearrowright
$$

Abstract Euler simulation of an ODE system - intuition

$$
\begin{gathered}
\dot{a}=0, \dot{v}=a, \dot{x}=v \\
a(0)=1, v(0)=0, x(0)=0
\end{gathered}
$$

with the Euler algorithm, $\Delta_{t}=1$:

$$
i(t)=i\left(t-\Delta_{t}\right)+\dot{i}\left(t-\Delta_{t}\right) \times \Delta_{t} \quad \begin{array}{cccc}
\mathrm{t} & 0 & 1 & 2 \\
\hline & 3 \\
\hline \mathrm{a} & 1 & 1 & 1 \\
\mathrm{v} & 0 & 1 & 1 \\
\mathrm{x} & 0 & 0 & 1 \\
& 2 & \mathrm{t} & 0 \\
\hline
\end{array}
$$

$$
\text { abstraction from } \mathbb{R}^{+} \rightarrow \mathbb{B}:
$$

$$
\left\{\begin{array}{l}
0 \text { if the value is } 0 \\
1 \text { otherwise }
\end{array}\right.
$$

$$
\text { abstract state sequence }[a, v, x] \text { : }
$$

$$
100 \rightarrow 110 \rightarrow 111 \circlearrowright \quad \text { vs } \quad 100 \rightarrow 111 \circlearrowright
$$

Abstract Euler simulation of the ODEs,
which keeps causality between the events, to compute the abstract state transition graph

ODE system in FOL — syntax

Signature: $\Sigma=\mathscr{V} \cup \mathbb{R} \cup\{+, *\}$
Terms: $e, e^{\prime} \in \mathscr{E}_{\Sigma}(\mathscr{V}) \quad::=x|\rho| e+e^{\prime} \mid e * e^{\prime}$ where $x \in \mathscr{V}, \rho \in \mathbb{R}$,
Formula: $\quad \phi, \phi^{\prime} \in \mathscr{F}_{\Sigma}(\mathscr{V})::=e=e^{\prime}|\exists x \phi| \phi \wedge \phi^{\prime} \mid \neg \phi$ where $x \in \mathscr{V}, x \in \mathscr{V}$, and $e \in \mathscr{E}_{\Sigma}(\mathscr{V})$

ODE system in FOL — syntax

Signature: $\Sigma=\mathscr{V} \cup \mathbb{R} \cup\{+, *\}$
Terms: $e, e^{\prime} \in \mathscr{E}_{\Sigma}(\mathscr{V}) \quad::=x|\rho| e+e^{\prime} \mid e * e^{\prime}$ where $x \in \mathscr{V}, \rho \in \mathbb{R}$,
Formula: $\quad \phi, \phi^{\prime} \in \mathscr{F}_{\Sigma}(\mathscr{V})::=e=e^{\prime}|\exists x \phi| \phi \wedge \phi^{\prime} \mid \neg \phi$ where $x \in \mathscr{V}, x \in \mathscr{V}$, and $e \in \mathscr{E}_{\Sigma}(\mathscr{V})$
variable $\mathscr{V}=\{i \forall i \in V\} \cup\{i \forall i \in V\}$, ODE system $=$ a FOL formula:

$$
\operatorname{odes}(R)=\operatorname{def} \bigwedge_{A \in V} \AA=\sum_{r \in R} \delta_{r}(A) * e_{r} \wedge A \geq 0
$$

Creation of a new formula from the ODE formula

$$
\begin{aligned}
& \mathscr{V}=\{i \forall i \in V\} \cup\{i \forall i \in V\} \cup\{\vec{i} \forall i \in V\} \cup\{\vec{i} \forall i \in V\} \\
& \phi=\exists \dot{v} \exists x \vec{x} \vec{v} \exists \vec{x} .
\end{aligned}
$$

$$
\begin{aligned}
& \wedge \vec{a}=a+\AA \quad \wedge \vec{v}=v+\grave{v} \quad \wedge \vec{x}=x+\grave{x} \\
& \wedge a \leq \vec{a} \quad \wedge v \leq \vec{v} \quad \wedge x \leq \vec{x} \\
& \wedge \quad a \geq 0 \\
& \wedge v \geq 0 \\
& \wedge x \geq 0 \\
& f v(\phi)=\{a, v, x, \vec{a}, \vec{v}, \vec{x}\}
\end{aligned}
$$

\rightarrow An abstract state transition graph is made from all the assignment of the free variables that make ϕ true. Domain $=\mathbb{S}=\{-1,0,1\}$ (but on \mathbb{B} for the free variables)

Resulting abstract STG for the enzymatic process

$$
\mathscr{R}=\underbrace{\overbrace{\underset{e_{\text {off }}}{ }}^{r_{\mathrm{S}}} \mathrm{C}}_{r_{\text {off }}} \stackrel{e_{\text {on }}}{\stackrel{e_{\text {cat }}}{\longrightarrow} \mathrm{E}+2 \times \mathrm{P}}
$$

Future work: run ASKeD-BN on this dynamics

Dynamics of a real-world CRN model, from simulation

(1) numerical simulation of the SBML model, (2) binarisation

What is the Structure of CRN?

$$
\mathscr{R}=\overbrace{\underbrace{\mathrm{E}+\mathrm{S} \stackrel{e_{\text {off }}}{\stackrel{e_{\text {off }}}{\longrightarrow}} \mathrm{C}}_{r_{\text {off }}} \overbrace{\stackrel{e_{\text {cat }}}{r_{\text {on }}} \mathrm{E}+2 \times \mathrm{P}}^{r_{\text {cat }}}}^{\overbrace{\text { cat }}}
$$

There is a reaction r in which...

1. X is a reactant and Y disappears then $X \xrightarrow{-} Y$
2. X is an inhibitor and Y appears then $X \xrightarrow{-} Y$
3. X is a reactant or an activator and Y appears then $X \xrightarrow{+} Y$
4. X is an inhibitor and Y disappears then $X \xrightarrow{+} Y$

What is the Structure of CRN?

$$
\mathscr{R}=\overbrace{\underbrace{\mathrm{E}+\mathrm{S} \stackrel{e_{\text {off }}}{\stackrel{e_{\text {off }}}{\longrightarrow}} \mathrm{C}}_{r_{\text {off }}} \overbrace{\stackrel{e_{\text {cat }}}{r_{\text {on }}} \mathrm{E}+2 \times \mathrm{P}}^{r_{\text {cat }}}}^{\overbrace{\text { cat }}}
$$

There is a reaction r in which...

1. X is a reactant and Y disappears then $X \xrightarrow{-} Y$
2. X is an inhibitor and Y appears then $X \xrightarrow{-} Y$
3. X is a reactant or an activator and Y appears then $X \xrightarrow{+} Y$
4. X is an inhibitor and Y disappears then $X \xrightarrow{+} Y$

Evaluation of the simulation based conversion

Nice results on our criteria, on this (very specific) application case

- IG \subseteq PKN (by construction)
- the general STG of the synthesised BNs recover a good proportion of the transitions of the sequence.
- small number of BNs syntesised (thanks to mincard minDNF)

Remaining Things to Investigate

When using simulation:

- overfitting to the given seq. of state? (drawback of mincard minDNF)
- choice binarisation procedure and error measure?

Math and computer science for a biologist: \checkmark

Thanks for your attention.

athenais.vaginay@loria.fr (looking for "write a PhD thesis" and "find a post-doc" advice :)))

$$
\mathscr{R}=\left\{\begin{array}{lll}
r_{\mathrm{on}}=e_{\mathrm{on}} & : \mathrm{S}+\mathrm{E} & \rightarrow \mathrm{C} \\
r_{\mathrm{off}}=e_{\mathrm{off}} & : \mathrm{C} & \rightarrow \mathrm{~S}+\mathrm{E} \\
r_{\mathrm{cat}}=e_{\mathrm{cat}} & : \mathrm{C} & \rightarrow \mathrm{E}+2 \times \mathrm{P}
\end{array}\right.
$$

$$
\mathscr{R}=\left\{\begin{array}{lll}
r_{\mathrm{on}}=e_{\mathrm{on}} & : \mathrm{S}+\mathrm{E} & \rightarrow \mathrm{C} \\
r_{\mathrm{off}}=e_{\mathrm{off}} & : \mathrm{C} & \rightarrow \mathrm{~S}+\mathrm{E} \\
r_{\mathrm{cat}}=e_{\mathrm{cat}} & : \mathrm{C} & \rightarrow \mathrm{E}+2 \times \mathrm{P}
\end{array}\right.
$$

$$
\mathscr{R}=\left\{\begin{array}{lll}
r_{\mathrm{on}}=e_{\mathrm{on}} & : \mathrm{S}+\mathrm{E} & \rightarrow \mathrm{C} \\
r_{\mathrm{off}}=e_{\mathrm{off}} & : \mathrm{C} & \rightarrow \mathrm{~S}+\mathrm{E} \\
r_{\mathrm{cat}}=e_{\mathrm{cat}} & : \mathrm{C} & \rightarrow \mathrm{E}+2 \times \mathrm{P}
\end{array}\right.
$$

$$
\mathscr{R}=\left\{\begin{array}{lll}
r_{\mathrm{on}}=e_{\mathrm{on}} & : \mathrm{S}+\mathrm{E} & \rightarrow \mathrm{C} \\
r_{\mathrm{off}}=e_{\mathrm{off}} & : \mathrm{C} & \rightarrow \mathrm{~S}+\mathrm{E} \\
r_{\mathrm{cat}}=e_{\mathrm{cat}} & : \mathrm{C} & \rightarrow \mathrm{E}+2 \times \mathrm{P}
\end{array}\right.
$$

$$
\mathscr{R}=\left\{\begin{array}{lll}
r_{\mathrm{on}}=e_{\mathrm{on}} & : \mathrm{S}+\mathrm{E} & \rightarrow \mathrm{C} \\
r_{\mathrm{off}}=e_{\mathrm{off}} & : \mathrm{C} & \rightarrow \mathrm{~S}+\mathrm{E} \\
r_{\mathrm{cat}}=e_{\mathrm{cat}} & : \mathrm{C} & \rightarrow \mathrm{E}+2 \times \mathrm{P}
\end{array}\right.
$$

Reaction Network - Structure and Dynamics

$$
\mathscr{R}=\underbrace{\stackrel{e_{\text {cat }}}{\longrightarrow} \mathrm{E}+2 \times \mathrm{P}}_{\underbrace{}_{r_{\text {off }}} \overbrace{e_{\text {off }}}^{r_{\stackrel{\text { en }}{ }}^{r_{\text {on }}}} \mathrm{C}}
$$

Structure:

1. If Y is a reactant and X disappears then $Y \xrightarrow{\leftrightarrows} X$
2. If Y is a reactant and X appears then $Y \xrightarrow{+} X$
[Fages et al. 2008]

Dynamics:
numerical simulation of the ODEs

+ binarisation

ASKeD-BN— minimality constraints

\rightarrow For finding the minDNF(s) given a truth table

	putative input	output
0	00	1
1	01	1
2	10	1
3	11	0

Several candidate DNFs, but only one minimal

What I have vs what I want

Existing mathematical models (ODEs, Petri Nets, ...) encoded as CRNs

CRN
$\mathscr{R}=\overbrace{\underbrace{\overbrace{e_{\text {off }}}^{\stackrel{e}{\text { on }}^{r_{\text {on }}}} \mathrm{C}}_{r_{\text {off }}} \stackrel{e_{\text {cat }}}{r_{\text {cat }}} \mathrm{E}+2 \times \mathrm{P}}^{r_{\text {cat }}}$

ODEs system

$$
\left\{\forall i \in V, \frac{\mathrm{~d} i}{\mathrm{~d} t}=f(t, x)\right\}
$$

$$
\begin{gathered}
\text { differential semantics of a CRN : } \\
\left\{\forall i \in V, \frac{\mathrm{~d} i}{\mathrm{~d} t}=\sum_{r \in \mathscr{R}} e_{r} \times \delta_{r}(i)\right\} \\
\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{d} t}=\underbrace{e_{\text {on }} \times 1}_{r_{\text {on }}}+\underbrace{e_{\text {off }} \times-1}_{r_{\text {off }}}+\underbrace{e_{\text {cat }} \times-1}_{r_{\text {cat }}}
\end{gathered}
$$

ODE system in FOL - semantics

Semantics: the truth value $\|\phi\|^{\alpha, S} \in \mathbb{B}$ computed given an interpretation (= a Σ-structure $S+$ a variable assignment $\alpha: \mathscr{V} \rightarrow \operatorname{dom}(S)$)
Solutions of ϕ on a given structure $=$ the assignements that make ϕ true: $\operatorname{sol}^{S}(\phi)=\left\{\alpha_{\mid f v \phi} \mid \alpha: \mathscr{V} \rightarrow \operatorname{dom}(S),\|\phi\|^{\alpha, S}=\right.$ true $\}$.

Athénaïs Vaginay, Taha Boukhobza, Malika Smaïl-Tabbone. Automatic Synthesis of Boolean Networks from Biological Knowledge and Data. OLA21: International Conference on Optimization and Learning, Jun 2021, online.

Joachim Niehren, Athénaïs Vaginay, Cristian Versari.
Abstract Simulation of Reaction Networks via Boolean Networks.
CMSB2022: 20th International Conference on Computational Methods in Systems Biology, Sep 2022, Bucarest, Romania.

Athénaïs Vaginay, Taha Boukhobza, Malika Smaïl-Tabbone. From quantitative SBML models to boolean networks. CNA2021: 10th International Conference on Complex Networks and their Applications, Nov 2021, Madrid, Spain.

