10: Differential Equations & Differential Invariants Logical Foundations of Cyber-Physical Systems

Heavily inspired from the slides of André Platzer

SO FAR: elementary CPS (his words) TODAY: Advance CPS

Recall from Chapter 5

The differential lemma

$$['] [x' = f(x)]P \leftrightarrow \forall t \ge 0 [x := y(t)]P \qquad (y' = f(y), y(0) = x)$$

y captures all the behaviour that the DE could have

On saturday, Sami said "we need to make the math ourselves".

Global solution for a given initial value

=> The solutions are more complicated than the ODEs

ODESolution = the physical processLocal descriptionGlobal descriptionSimple(More) complicated

By solving the ODES, we undo their **descriptive power**

$$\begin{split} \frac{d[\operatorname{Cdc13}_T]}{dt} &= k_1 M - (k_2' + k_2'' [\operatorname{Ste9}] + k_2''' [\operatorname{Slp1}]) [\operatorname{Cdc13}_T], & \frac{d[\operatorname{IEP}]}{dt} = k_9 [\operatorname{MPF}] \frac{1 - [\operatorname{IEP}]}{J_9 + 1 - [\operatorname{IEP}]} - k_{10} \frac{J_{10} + [\operatorname{IEP}]}{J_{10} + [\operatorname{IEP}]}, \\ \frac{d[\operatorname{QreMPF}]}{dt} &= k_{\operatorname{wee}} ([\operatorname{Cdc13}_T] - [\operatorname{preMPF}]) - k_{25} [\operatorname{preMPF}] - (k_2' & \frac{d[\operatorname{Rum1}_T]}{dt} = k_{11} - (k_{12} + k_{12}' [\operatorname{SK}] + k_{12}'' [\operatorname{MPF}]) [\operatorname{Rum1}_T], \\ &+ k_2'' [\operatorname{Ste9}] + k_2''' [\operatorname{Slp1}]) [\operatorname{preMPF}], & \frac{d[\operatorname{SK}]}{dt} = k_{13} [\operatorname{TF}] - k_{14} [\operatorname{SK}], \\ \frac{d[\operatorname{Ste9}]}{dt} &= (k_3' + k_3'' [\operatorname{Slp1}]) \frac{1 - [\operatorname{Ste9}]}{J_3 + 1 - [\operatorname{Ste9}]} - (k_4' [\operatorname{SK}]) & \frac{dM}{dt} = \mu M, \\ &+ k_4 [\operatorname{MPF}]) \frac{[\operatorname{Ste9}]}{J_4 + [\operatorname{Ste9}]}, & [\operatorname{Trimer}] = \frac{2[\operatorname{Cdc13}_T] [\operatorname{Rum1}_T]}{[\operatorname{Cdc13}_T] [\operatorname{Rum1}_T]}, \\ \frac{d[\operatorname{Slp1}_T]}{dt} &= k_5' + k_3'' \frac{[\operatorname{MPF}]^4}{J_5' + [\operatorname{MPF}]^4} - k_6 [\operatorname{Slp1}_T], & [\operatorname{TF}] = G(k_{15} M, k_{16}' + k_{16}' [\operatorname{MPF}]) J_{15}, J_{16}), \\ & \text{where} \\ &k_{wee} = k_{wee}' + (k_{wee}' - k_{wee}')G(V_{awee}, V_{iwee} [\operatorname{MPF}], J_{awee}, J_{iwee}), \\ &- k_8 \frac{[\operatorname{Slp1}]}{J_8 + [\operatorname{Slp1}]} - k_6 [\operatorname{Slp1}], & \sum_{2 = [\operatorname{Cdc13}_T] + [\operatorname{Rum1}_T] + K_{diss}, \\ &G(a, b, c, d) = \frac{2ad}{b - a + bc + ad + \sqrt{(b - a + bc + ad)^2 - 4ad(b - a)}}. \end{aligned}$$

Differential-algebraic sytem of the cell cycle of the fission yeast, Novak et al. 2001

$$x'' = -x$$
 $x(t) = \sin(t) = t - \frac{t^3}{3!} + \frac{t^5}{5!} - \frac{t^7}{7!} + \frac{t^9}{9!} - \dots$

 \rightarrow not part of FOL arithmetics:

- the sin is not part of our synthax,
- the series need infinitely many power

no elementary closed-form solution

Use the differential lemma:

$$['] [x' = f(x)]P \leftrightarrow \forall t \ge 0 [x := y(t)]P \qquad (y' = f(y), y(0) = x)$$

Directly reasoning on the ODEs themselves

- Exploit the descriptive power of ODEs for proof,
- No need to solve ODEs anymore

Induction:

Establishing the truth of property by analysing generically the one **step** (= the **loop body**) that is executed repeatidly

Induction with discrete dynamics: ✓ Lemma 7.3 (Loop invariant rule):

$$\begin{array}{c} \text{loop} \quad \frac{\Gamma \vdash J, \Delta \quad J \vdash [\alpha]J \quad J \vdash P}{\Gamma \vdash [\alpha^*]P, \Delta} \end{array}$$

Induction with continous dynamics: ? Differential invariant

$$\frac{\Gamma \vdash F, \Delta \quad F \vdash ???F \quad F \vdash P}{\Gamma \vdash [x' = f(x)]P, \Delta}$$

Induction with continous dynamics: ?

Differential invariant

$$\frac{\Gamma \vdash F, \Delta \quad F \vdash ???F \quad F \vdash P}{\Gamma \vdash [x' = f(x)]P, \Delta}$$

[']
$$[x' = f(x)]P \leftrightarrow \forall t \ge 0 [x := y(t)]P$$

(y' =f(y), y(0)=x)

→ "The system only evolves into **direction** where F"

But... we do not have logic to talk about "direction"..._{10/23}

internalize primes into dL syntax

→ differential dynamic logic

$$e ::= x \mid x' \mid c \mid e + \tilde{e} \mid e - \tilde{e} \mid e \cdot \tilde{e} \mid e/\tilde{e} \mid (e)'$$

Semantics of primes:

$$\omega \llbracket (e)' \rrbracket = \sum_{x} \omega(x') \frac{\partial \llbracket e \rrbracket}{\partial x} (\omega)$$
$$\frac{\partial \llbracket e \rrbracket}{\partial x} (\omega) = \lim_{\kappa \to \omega(x)} \frac{\omega_x^{\kappa} \llbracket e \rrbracket - \omega \llbracket e \rrbracket}{\kappa - \omega(x)}$$

Note that the states are enriched with x'

We need something compositional and which does not depend of time. However...

The meaning of the syntactival expression happens to **coïncide** with the meaning of the analytic time derivative

Good that it coïncide because we were already using it...

$\begin{array}{l} \text{Definition (Hybrid program semantics)} & (\llbracket \cdot \rrbracket : \text{HP} \to \wp(\mathcal{S} \times \mathcal{S})) \\ \llbracket x' = f(x) \& Q \rrbracket = \{(\varphi(0)|_{\{x'\}^{\complement}}, \varphi(r)) : \varphi(z) \models x' = f(x) \land Q \text{ for all } 0 \leq z \leq r \\ & \text{for a solution } \varphi : [0, r] \to \mathcal{S} \text{ of any duration } r \in \mathbb{R} \} \\ & \text{where } \varphi(z)(x') \stackrel{\text{def}}{=} \frac{d\varphi(t)(x)}{dt}(z) \end{array}$

with
$$\varphi(0) = \omega$$
 except on x' and $\varphi(r) = \nu$

There is an x' in all the states, but:

Initial value of x' in ω is irrelevant since defined by ODE. Final value of x' is carried over to the final state ν .

Lemma (Differential assignment) (Effect on Differentials) If $\varphi \models x' = f(x) \land Q$ then $\varphi \models P \leftrightarrow [x' := f(x)]P$

Logical way to expose that "while we follow the DE: x' = f(x)"

Lemma (Derivations)

(Equations of Differentials)

$$(e+k)' = (e)' + (k)'$$

 $(e \cdot k)' = (e)' \cdot k + e \cdot (k)'$
 $(c())' = 0$
 $(x)' = x'$

for constants/numbers c()for variables $x \in V$

$$\omega\llbracket(e)'\rrbracket = \sum_{x} \omega(x') \frac{\partial\llbracket e\rrbracket}{\partial x}(\omega)$$

Axiomatics

(1) DE captures the differential assignement lemma (a semantic principle) to make it accessible as an axiomatic principle in the logic

Differential effect (DE)

$$[x' = f(x) \& Q] P \leftrightarrow [x' = f(x) \& Q] [x' := f(x)] P$$

Lemma (Differential assignment)

(Effect on Differentials)

If $\varphi \models x' = f(x) \land Q$ then $\varphi \models P \leftrightarrow [x' := f(x)]P$

"while we follow the DE: x' = f(x)"

Axiomatics

(2) DI captures uses the differential lemma to make it accessible as an axiomatic principle in the logic

Differential Induction (DI) $([x'=f(x)]e=0 \leftrightarrow e=0) \leftarrow [x'=f(x)](e)'=0$ 0 at all time if 0 right now No change of e along the DE $\frac{\mathrm{d}\varphi(t)\llbracket e\rrbracket}{\mathrm{d}t}(z) = 0$ Lemma (Differential lemma) (Differential value vs. Time-derivative) If $\varphi \models x' = f(x) \land Q$ for duration r > 0, then for all $0 \le z \le r$, $FV(e) \subseteq \{x\}$: $\varphi(z)\llbracket(e)'\rrbracket = \frac{\mathrm{d}\varphi(t)\llbracket e\rrbracket}{\mathrm{d}t}(z)$

Rq: it works not only for 0, but he always normalises the equations

17/23

We can pack DE and DI together in the dI proof rule:

Differential Invariant dl
dl
$$\frac{\vdash [x' := f(x)](e)' = 0}{e = 0 \vdash [x' = f(x)]e = 0}$$

from question about DE to question about assignment

Proof (dl is a derived rule).

$$\begin{array}{c} \vdash [x':=f(x)](e)'=0 \\ \hline G & \vdash [x'=f(x)][x':=f(x)](e)'=0 \\ \hline DE & \vdash [x'=f(x)](e)'=0 \\ \hline DI & e=0 \vdash [x'=f(x)]e=0 \end{array} \end{array}$$
Gödel generalisation rule, Chap. 5
G $\frac{P}{[\alpha]P}$

 $DI ([x' = f(x)]e = 0 \leftrightarrow e = 0) \leftarrow [x' = f(x)](e)' = 0 \quad DE [x' = f(x)]P \leftrightarrow [x' = f(x)][x' := f(x)]P$

Simple proof without solving ODE, just by differentiating

Differential Invariant dl
dl
$$\frac{\vdash [x' := f(x)](e)' = 0}{e = 0 \vdash [x' = f(x)]e = 0}$$

Simple proof without solving ODE, just by differentiating

Differential Invariant dI
dI
$$\frac{\vdash [x' := f(x)](e)' = 0}{e = 0 \vdash [x' = f(x)]e = 0}$$

Simple proof without solving ODE, just by differentiating

Differential Invariant dI
dI
$$\vdash [x' := f(x)](e)' = 0$$

 $e = 0 \vdash [x' = f(x)] = 0$

Simple proof without solving ODE, just by differentiating

Differential Invariant dl
dl
$$\frac{\vdash [x' := f(x)](e)' = 0}{e = 0 \vdash [x' = f(x)]e = 0}$$

Conclusion:

Unexpected analogy between discrete and continuous dynamics \rightarrow we found the "body loop" equivalent for continuous dynamics \rightarrow we can now use induction without solving the ODE

say goodbye to the differential lemma, that became superfluous

 $['] [x' = f(x)]P \leftrightarrow \forall t \ge 0 [x := y(t)]P \qquad (y' = f(y), y(0) = x)$

Logical trinity:

