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SO FAR: elementary CPS (s woras)
TODAY: Advance CPS
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Recall from Chapter 5

The differential lemma
[] X' =f(x)]P < ViZ0[x:=y()]P (v =i(y), y(0)=x)

y captures all the behaviour that the DE could have

. li. \'\ \‘\"‘m"m-——__._‘__,_
_._.-ﬂ".-f‘r .il ‘\\x‘\ﬂ.‘m-ﬂ-__..______rﬂ_,

On saturday, Sami said
“we need to make
the math ourselves”.

3/23
Global solution for a given initial value



ODE Solution
x'=1,x(0) = { x(t) = xo +t
X' =5,x(0) = |:]}Constantallnear x(t) = 0—|—5t
x' = X}X(O) = Xp Linear-exponential | x(t) =
x! =x=.x(0) = %o (): =
x’:%jx(O): x(t)=+v1+2t...
y'(x) = —2xy,y(0) =1 y(x) = e"";
x'(t) = tx,x(0) = xo X(t)= xge?
X' = v/x,x(0) = X (): tty/Xt+X .
x'=y,y=—x,x(0)=0,y(0)=1 | x(t) = smt ,y(t) = cost =
x' =1+x%,x(0)=0 X(t): ant ‘
X'(1) = 5x(t) x(t)= ~2 non- analytic
x = x% 4+ x* 777

X'(t) =e

non-elementary
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=> The solutions are more complicated than the ODEs

ODE Solution = the physical process
Local description Global description
Simple (More) complicated

By solving the ODES, we undo their descriptive power 00
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d[Cdc13;] d[IEP] 1 —[IEP] [1EP]

1 :k[M_{k2+kz[S[‘39]+k2[Slpl]}[CdClST], T:kg[MPF]J§,+1—[IEP]_ mm,
reMPF dRuml 7] : ’
%kaﬂﬁ{[CdCLST]—[preMPF'])—kzﬁ[preMPF]—{kfl 7 =k (ki ko[ SK]+ ko[ MPF)[Ruml 7],
d[SK]
+ k[ Ste9 ]+ k5[ Sip1])[preMPF], 77—kl TF] =k 4[SK].
d[Ste9]_ 4 TSIl 1—[Ste9] LTSK dM_M
2[Cdc137|[ Ruml
[Ste9] [Trimer]= : [,J cl3r)[Rumiy] ;
+ k4[MPF]) 7,507’ S +37—4[Cdc13;][Ruml ]
Cdcl3;]|— MPF|)(|Cdc134]|—| Tri
(f[SlplT] r [MPF]4 [MPF]:{[ C T] [pre ]){[ C T] [ rlnler]}_j
: [TF]=G(k sM kis+ ki MPF].J5.J6),
d[Slp1] — k.[IEP] [Slp1l7]—[Slpl] where
dr ! JT —|— [Slpl T] o [Slpl ] kﬁrﬁe:k:%’ﬁﬁ—i_ {k::r’ﬁﬁ_ k;’ﬁE}G{ Vﬂ'ﬂ’fﬁfﬁ ? Viﬂ’EE[MPF]EJﬂVt’EE 'J‘Ii'ﬂn"ﬁﬁ)'.l
[ Sip1 ] kys= kst (k35— k35) G (V gos MPF], V35,7 125, j25),
—kg —ke[Slpl],
Jg+[Slpl] 2 =[Cdc137]+[Ruml 7]+ K 4 ,
2ad
Gla.b.c.d)= :

b—a+bc+ad+\(b—a+ bc-l—ud}z—ﬁlud{b—u}.

Differential-algebraic sytem of the cell cycle of the
fission yeast, Novak et al. 2001




#r Pt

x()=sin(t)=t—g+ -7 5

— nhot part of FOL arithmetics:
- the sin is not part of our synthax,
- the series need infinitely many power

no elementary closed-form solution

O~
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Use the differential lemma:
[] X' =f(x)]P < Vt=0[x:=y()]P (v =f(y), y(0)=x)

v

Directly reasoning on the ODEs themselves
- Exploit the descriptive power of ODEs for proof,
- No need to solve ODEs anymore
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Induction:
Establishing the truth of property by analysing generically the one step
(= the loop body) that is executed repeatidly

Induction with discrete dynamics: v Induction with continous dynamics: ?

Lemma 7.3 (Loop invariant rule): | Differential invariant

'cJA JrlalJ JEP THF,A FE?7?F FEP
I'Flox]pA [ [x = f(x)]P, A

loop
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Induction with continous dynamics: ?

Differential invariant

[-F,A FF?72F FFP
M [x = f(x)]P, A

'] [X' = f(x)]P & Vt>0[x:=y(t)]P —F F

-~ “The system only evolves
Into direction where F”

But... we do not have logic
to talk about “direction”...,; o3




internalize primes into dL syntax} _ differential dynamic logic

e:=x|x|clet+é|e—é|e-é|e/é| (e)

Semantics of primes:

o= Y w() A )

“ | K

J|e] iy i wile] — wlel / .
Ox k—ow(x) K — LU(X) /

Note that the states are enriched with x’
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J(e)] “"'[e] nonsense!

We need something compositional
and which does not depend of time.
However...

The meaning of the syntactival expression happens to coincide with
the meaning of the analytic time derivative

Lemma (Differential lemma) (Differential value vs. Time-derivative)
If o = x' = f(x) A Q for duration | then for all 0<z<r, FV(e) C {x}:

Syntactic " = (;)[(e)'] = d""(”“e' (z) ~= Analytic "
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AA

Good that it coincide because we were already using it... —)

Definition (Hybrid program semantics) ([-] : HP — o(S x 8))
[¥X' = f(x) & QI ={(¢(0)] ./ 1c, p(r)) : p(2) E x" = f(x) A Q forall 0<z<
for a solution ¢ : [0, r] — S of any duration r € R}

where ¢(z)(x') def M—M—l(z)

t)(x
dt

with (0) = w except on x’ and ¢(r) = v

There is an X' in all the states, but:

Initial value of x” in w is irrelevant since defined by ODE.
Final value of x’ is carried over to the final state v.

13/23



Lemma (Differential assignment) (Effect on Differentials)
o =x = fx)AQ then g = Po [xXi=1(x)]P

Logical way to expose that “while we follow the DE: X' = f(x)"
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Lemma (Derivations) (Equations of Differentials)

(e + k) = (e)' + (k)
(e-k) =(e) - k+e- (k)
(el =0 for constants/numbers c()

(x) =«

for variables x € V

wl(e)] = Zw(x')ale] ()
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Axiomatics

(1) DE captures the differential assignement lemma (a semantic principle)
to make it accessible as an axiomatic principle in the logic

Differential effect (DE)
[x'= fx)& QIP & [x' = f(x) & Q)X = f(x)]P

Lemma (Differential assignment) (Effect on Differentials)
Ifol=Ex'=f(x)AQ then ¢ = P < [x :=f(x)]P

“while we follow the DE: x’ = f(x)”
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Axiomatics

(2) DI captures uses the differential lemma
to make it accessible as an axiomatic principle in the logic

Differential Induction (DI)
([ = f(x)]e =0 +> e = 0) « [x' = f(x)](e) =0

0 at all time if O right now No change of e )
\ along the DE

dp(t)lel | =
g @ =0 \

If o = x' = f(x) A Q for duration r>0, then for all 0<z<r, FV(e) C {x}:

c(2(ey] = L (z)
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We can pack DE and DI together in the dl proof rule:

Differential Invariant sl

di - [x':=f(x)](e)’ =0 from question about DE
e=0F [x'=f(x)le=0 toquestion about assignment

Proof (dl is a derived rule).

= [x":==f(x)](e) =0 Godel generalisation rule, Chap. 5
T W = Al = F(](e) =0 P §
T = F(x)](e) = 0 [a]P

| e=0

DI ([x’ =f(x)le=0¢e= 0) — [xX' =f(x)l(e) =0 DE [x' = f(x)]P & [¥' = f(x)][¥ := f(x)]P



Example: Rotational Dynamics T
- v
*
= - 2v(w) +2w(—v) =0
=i = [Vi:=w][w:=—v]2vV + 2ww' — 2rr =0
T Vw2 —rP=0F [V =w,w = —v]V2+ w2 —r2 =0
R - v24wl—r?=0 = [V = w, W = —v]v?+w2—r?=0

Simple proof without solving ODE, just by differentiating

Differential Invariant il

- R: i Ee = ()] (e)l =0
-A - B=>A|-B e=0F [ =F(x)le=0
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Example: Rotational Dynamics S
viAw =rf a3 [V =w,w = —v]v 4w = 1 4
= Vv
%
E - 2v(w) +2w(—v) =0
[:=] = [vi=w][w:=—v]2vV' + 2ww’ — 2/ =0

N2t w?2—r2=0H[V =w.w' = —v]v2 + w? —r2 =0
i I—‘v2+w2—r2=0\—>|[v’ =w,w = —v]v4+w?—r’=0

Simple proof without solving ODE, just by differentiating

Differential Invariant il

- R: Ee = ()] (e)l =0

-Al- B:>W|'E d e=0F [x'=f(x)]le=0
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Example: Rotational Dynamics T
viAw =rf a3 [V =w,w = —v]v 4w = 1 L/
- v
*

= - 2v(w) +2w(—v) =0

['+=] = [v:=w][w:=—v]2vV + 2ww’' — 2r’ =0

T2 w?—rP=0H{[v = w.w = —v]\2+ w2 —r2 =0

3% - v24w?—r’=0 = [V = w, W = —v]vZ+w?—r’=0

Simple proof without solving ODE, just by differentiating

d
> R: - [x = f(x)](e) = 0
-A - B=>A|-B = = =T
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Example: Rotational Dynamics T
- v
*
= - 2v(w) +2w(—v) =0
=i = [Vi:=w][w:=—v]2vV + 2ww' — 2rr =0
T Vw2 —rP=0F [V =w,w = —v]V2+ w2 —r2 =0
R - v24wl—r?=0 = [V = w, W = —v]v?+w2—r?=0

Simple proof without solving ODE, just by differentiating

Differential Invariant il

- R: i Ee = ()] (e)l =0
-A - B=>A|-B e=0F [ =F(x)le=0
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Conclusion:

Unexpected analogy between discrete and continuous dynamics
— we found the “body loop” equivalent for continuous dynamics
— We can now use induction without solving the ODE

say goodbye to the differential lemma,
that became superfluous

] [xX' = f(x)]P < Vi>0[x:=y(t)]P (v =f(y), y(0)=x)
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Logical trinity:

Axiomatics

Syntax Semantics
Syntax defines the notation
What problems are we allowed to write down?

Semantics what carries meaning.
What real or mathematical objects does the syntax stand for?

Axiomatics internalizes semantic relations into universal syntactic
transformations.
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