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Heavily inspired from the slides 
of André Platzer
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SO FAR: elementary CPS (his words)

TODAY: Advance CPS
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The differential lemma

Recall from Chapter 5 

On saturday, Sami said
“we need to make 
the math ourselves”.

y captures all the behaviour that the DE could have 

Global solution for a given initial value
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}Constant→linear 

}

Linear→exponential 
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Solution = the physical process
Global description

(More) complicated

ODE
Local description

Simple

=> The solutions are more complicated than the ODEs

By solving the ODES, we undo their descriptive power

/23



6

Differential-algebraic sytem of the cell cycle of the 
fission yeast, Novak et al. 2001
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→ not part of FOL arithmetics: 
- the sin is not part of our synthax, 
- the series need infinitely many power
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Use the differential lemma:

Directly reasoning on the ODEs themselves
- Exploit the descriptive power of ODEs for proof,
- No need to solve ODEs anymore
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Induction: 
Establishing the truth of property by analysing generically the one step 
(= the loop body) that is executed repeatidly

Lemma 7.3 (Loop invariant rule): Differential invariant

Induction with discrete dynamics: ✓ Induction with continous dynamics: ?
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Induction step with 

continuous time?!

→ “The system only evolves
 into direction where F”

Differential invariant

Induction with continous dynamics: ?

But… we do not have logic
to talk about “direction”... /23



11

– 

→ differential dynamic logic

Semantics of primes:

Note that the states are enriched with x’
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We need something compositional
and which does not depend of time.
However...

The meaning of the syntactival expression happens to coïncide with
the meaning of the analytic time derivative
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Good that it coïncide because we were already using it...

There is an x’ in all the states, but:
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Logical way to expose that “while we follow the DE: x’ = f(x)”
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Differential effect (DE)

Axiomatics

 “while we follow the DE: x’ = f(x)”

(1)  DE captures the differential assignement lemma (a semantic principle)
to make it accessible as an axiomatic principle in the logic
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Axiomatics

Differential Induction (DI)

(2)  DI captures uses the differential lemma
to make it accessible as an axiomatic principle in the logic

= 0

0 at all time if 0 right now

Rq: it works not only for 0, but he always normalises the equations

No change of e
along the DE
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We can pack DE and DI together in the dI proof rule:

dI

Gödel generalisation rule, Chap. 5

from question about DE 
to question about assignment
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Example: Rotational Dynamics

→ R:
|- A → B => A |- B 
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Conclusion:

say goodbye to the differential lemma,
that became superfluous

 👋

Unexpected analogy between discrete and continuous dynamics
→ we found the “body loop” equivalent for continuous dynamics
→ we can now use induction without solving the ODE
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Logical trinity:
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