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Formalisms to model biological processes
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Chemical Reaction Network (CRN)

M = {F; = e; : R; e Pi}iz1.m
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Chemical Reaction Network (CRN)

M ={%; =¢€;: R; 2 Pitizi.m

Bon = kon[S][E] : S + E = ES
Roit = koff[ES} :ES=S+E
Reat = kcat[ES] :ES=E+2-P

reactants, products, modifiers, kinetics

CRN are versatile and well-studied. However. . .
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a set V' of n components

Boolean status B = {0, 1}

local update function f; :B" - BVieV
=: “not™: V: “or’; A: Yand”
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a set V' of n components

Boolean status B = {0, 1}

local update function f; :B" - BVieV
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Boolean Network (BN)

a set V' of n components

Boolean status B = {0, 1}

local update function f; :B" - BVieV
—=: “not”; V: “or’; A: “and"”

Boolean network, its interaction graph and gen. asyn. state transition graph
= structure = dynamics

fe=-E &+

B — fes :=EAS A
) fp:=ESA(-EVP) < (P

fs:=-E
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Goal

Synthesise Boolean networks starting from an existing chemical reaction network

input: a chemical reaction network
output: a set of compatible Boolean networks

CRN BNs
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Goal,

Proposed Pipeline

Synthesise Boolean networks starting from an existing chemical reaction network

input: a chemical reaction network
output: a set of compatible Boolean networks

CRN

structure extraction

— N
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dynamics extraction

BNs synthesis

— BNs ~

BNs evaluation
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Goal, Proposed Pipeline, Implementation (:SBI\/ILZBNl)

Synthesise Boolean networks starting from an existing chemical reaction network

input: a chemical reaction network encoded in SBML
output: a set of compatible Boolean networks

structure extraction

& 1BJlibsBML

—~ .

ML 7

BNs synthesis
ASKeD-BN

e GE
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dynamics extraction
T
([apcopasi

![Vaginay et al. CNA 2021]

BNs evaluation
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Details about the steps — structure extraction

_ + _
Ron = kon[S][E] : S + E = ES N
Rot = kot|[ES] :ES =S + E ) voAs |+
%Cat:kcat[ES]lES=>E+2-P - @
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Details about the steps — structure extraction

_ + _
Ron = kon[S][E] : S + E = ES N
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Syntactical Influence Graph (SIG)

If X is a reactant or an activator and Y disappears then X — Y
If X is an inhibitor and Y appears then X — Y

If X is a reactant or an activator and Y appears then X Iy

4. If X is an inhibitor and Y disappears then X oy

[Fages et al. 2008]
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If X is a reactant or an activator and Y appears then X Sy
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Details about the steps — structure extraction

_ + _
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Syntactical Influence Graph (SIG)

If X is a reactant or an activator and Y disappears then X — Y
If X is an inhibitor and Y appears then X — Y

If X is a reactant or an activator and Y appears then X Iy

4. If X is an inhibitor and Y disappears then X oy

[Fages et al. 2008]
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Details about the steps — dynamics extraction

binarised Time-series (TS)
Ron = kon|S][E] : S + E = ES o=t
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Details about the steps — dynamics extraction

binarised Time-series (TS)
Ron = kon[S][E] : S + E = ES fe=t
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Details about the steps — dynamics extraction

binarised Time-series (TS)
Ron = kon[S][E] : S + E = ES fe=t
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(1) reconstruct ODE, (2) numerical simulation (parametrisation from the SBML
model, duration of the simulation chosen by the user)
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Details about the steps — dynamics extraction

binarised Time-series (TS)
Ron = kon[S][E] : S + E = ES fe=t

J20{ -
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(1) reconstruct ODE, (2) numerical simulation (parametrisation from the SBML
model, duration of the simulation chosen by the user), (3) binarisation
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Details about the steps — BNs Synthesis

Find f; : B — B Vi € V compatible with structural constraints (= domain)
and dynamical constraints (= to reproduce)
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Details about the steps — BNs Synthesis

Find f; : B — B Vi € V compatible with structural constraints (= domain)
and dynamical constraints (= to reproduce)

Disjunctive Normal Form (DNF) = disjunction of conjunctions

fes == (FESAEAS)V(EA-P)
—_—
conj. 1 conj. 2

N
)

15

Concentrations (in mol / L)

— 0.0
0 25 50 75 100

Time (in seconds)
Hard constraint: j appears

< - Soft constraint: f; minimise the
positively (resp. negatively)

- > unexplained transitions — penalty if:
in fi iff j =i (resp. j — i) c € f; observed at t but i;;1 =0
it+1 = 1 but no ¢ € f; observed at ¢
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Details about the steps — BNs Synthesis: soft constraint

[N

i U

1¢: observation if ¢ at time ¢
0;: binarisation threshold for ¢
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Details about the steps — BNs Synthesis:

soft constraint

4
1
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1¢: observation if ¢ at time ¢

0;: binarisation threshold for ¢
T: # time steps

U - set of unexplained time steps
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Details about the steps — BNs Synthesis: soft constraint

4
1
0; g =g
0 ¢ >

t

. . . minimise the Mean Absolute Error
1¢: observation if ¢ at time ¢

6;: binarisation threshold for i (ideally 0)
T: # time steps > 6 — i
% - set of unexplained time steps MAE;, = te%fiT ! ’
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Details about the steps — BNs Synthesis

Logic program (Answer-Set Programming) ASKeD-BN?
constraints: structural (= domain) and dynamical (= to reproduce)

output: exhaustive set of BNs whose interaction graph is a subgraph of
the SIG and their dynamics minimise the unexplained transitions.

%[Vaginay et al. OLA 2021]
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Details about the steps — BNs Synthesis

Logic program (Answer-Set Programming) ASKeD-BN?
constraints: structural (= domain) and dynamical (= to reproduce)

le-6

Concentrations (in mol / L)

0 25 50 75 100
Time (in seconds)

output: exhaustive set of BNs whose interaction graph is a subgraph of
the SIG and their dynamics minimise the unexplained transitions.

Bp i © O

%[Vaginay et al. OLA 2021]
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Details about the steps — BNs evaluation

» hard constraint: assert the interaction graph of synthesised BNs are
subgraph of the SIG v/(by construction)
> compute the “coverage proportion” of each synthesised BN
__ # recovered transitions
## transitions observed
(= 1 if the BN reproduces perfectly the sequence of configurations)
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Pipeline evaluation and results

Pipeline ran on 209 SBML models from Biomodels.
# components: 2 — 60
# parents: 10 max
— simple to medium complexity

Results about the runtime and the coverage of the BNs synthesised
for each input SBML model.
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Results — runtime

~T75% (=155/209) < 30 hours
~ half < 30 mins
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coverage proportion
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Results — coverage proportion

max # parents
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Med=0.77; Var=0, even when > 1 BN synthesised (except for 12 models)
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Results — coverage proportion

max # parents
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Med=0.77; Var=0, even when > 1 BN synthesised (except for 12 models)

Loss of performance when max # parents increases.
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Impact of SBML inconsistencies on structure extraction

Ex. BIOMD n°44: 1 BN generated; coverage=0.55
some kinetics use components not listed in the reactants nor
modifiers — incomplete SIG (missing parents)

F(AB,E):A+B=C

3[Fages et al. 2012]
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Impact of SBML inconsistencies on structure extraction

Ex. BIOMD n°44: 1 BN generated; coverage=0.55
some kinetics use components not listed in the reactants nor
modifiers — incomplete SIG (missing parents)

F(AB,E):A+B=C

> 60% of SBML models from Biomodels are not “well-formed”3,
but some can be fixed — add a step in the pipeline

3[Fages et al. 2012]
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Conclusion

Automatic transformation of a CRN into a set of BNs
SBML2BN = a proof of concept with possible improvements. . .

» for even more complex models (models with > 10 parents)
» fix not well-formed SBML models
> take more constraints into account (fixed-points)

» correct abstraction?
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Thanks for the opportunity to present our work! :)
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Details about the steps — dynamics extraction

binarised Time-series (TS)
Ron = kon[S][E] : S + E = ES fe=t

s20{  __oo—m———--
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Rot kOH[ES] :ES=S+E E 154 v (ES], 6~ 1646 — 07
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® / —-- [E], 6~3.36e - 07
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numerical simulation of the reconstructed ODE (parametrisation from the SBML
model, duration of the simulation chosen by the user) + binarisation

i = —kon[E][ | + kot[ES] + ket [ES]
P = ko [BI[S] — ko[BS — kear[ES]
ﬁlz] = 2kcat[ES}

dif] = —kou[EI[S] + kort[ES]
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CRNs in Biomodels @\\

1039 manually curated models
(data from 08th Nov. 2021)
available in the System Biology
Markup Language (SBML)

M Ordinary differential equation madel
Logical model

¥ Constraint-based model
Petri net
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Semantics of CRN M =

Stochastic
Continuous Time Markov Chain
numbers of molecules
ABZEME) ¢ A B
Continuous
Ordinary Differential Equations
concentrations over time

VieV:$E=3" f0.()

{f(A,B): A+ B = C}

Discrete
Petri net
numbers of molecules
AB—Cr+,A—— B~

Boolean
Asynchronous Transition System
presence / absence of molecules

AANB—-CAA/-AANB/-B
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Hierachy of CRN semantics

abstract

Galois connection between the
syntactical, stochastic, discrete and
Boolean semantics*

Boolean

T If a behaviour is not possible in the

Discrete Boolean sem.antlcs, it is not possible in
Conti the stochastic semantics for any
T v ontinuous .
L reaction rates

Stochastic Under large number conditions, the

T ODE semantics approximates the mean
Reactions stochastic behaviour®.

concrete

Slide adapted from Francois Fages' presentation Bioregul 2019

“*[Fages & Soliman 2006, 2008]
®[Gillespie 71]
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Details about the steps — BNs Synthetis

Method: ASKeD-BN [Vaginay et al. OLA 2021] (Answer-Set Programming)
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Modelling of biological systems
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|\/|ode||ing of biological Systems — Example: enzymatic reaction

enzyme

supstrate

poducts

Ron m\ Rcat !
\ ASE A =y A A A\

enz;/ﬁaﬂc
Complex

S+E==ES—E+2.P
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Modelling of biological Systems — Example: enzymatic reaction

supstrate
poducts
Ron [0, Reat . |
j/wa P )
7' enz ;laﬂc E
enzyme i ”’: dex

S+E==ES —E+2.P
constraints: known structure (= domain) and dynamics (= to reproduce)

I
Concentrations (in mol / L)

o
1=}
L

g
1=}
L

e
o w

o
]

0 25 50 75 100
Time (in seconds)
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Boolean Networks Synthesis

constraints: known structure (= domain) and dynamics (= to reproduce)

le—6
520
_ + _ s
€15
£
+ e
- c 10 o
VoA |+ £
- o
€05
[
v}
® :
O 0.0

0 25 50 75 100
Time (in seconds)



Boolean Networks Synthesis

constraints: known structure (= domain) and dynamics (= to reproduce)

le—6
520
_ + _ s
€15
£
+ e
- c 10 o
VoA |+ £
- o
€05
[
v}
® :
O 0.0

6 2’5 5‘0 7‘5 160
Time (in seconds)
output: (exhaustive set of) BNs compatible with the constraints
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Boolean Networks Synthesis

constraints: known structure (= domain) and dynamics (= to reproduce)

le-6
o I ———
_ + _ =
€154
£
P .
- c 1.0
VoA |+ S
- o
2054 s
[ .
v}
@ S T ———
O 0.0 1

0 25 50 75 100
Time (in seconds)

output: (exhaustive set of) BNs compatible with the constraints

fes =8
=ES

B — Ip
fs :=ES
fe=-S
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And then what?

Analysis on Boolean networks (even large ones !)
» reachability, attractors
» control
> ...

Despite their simplicity, BNs can fit complex biological phenomena.
Used for: cell cycle, cancer (breast, bladder, ...), ...
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BN control

Possible configurations of a system

O O O
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BN control

some are “normal”, some are “pathological”
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BN control

behaviour of a sane system goes through normal configurations...
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BN control

.. while a broken system gets stuck in a pathological configuration

Q@Q
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BN control

Which interventions can repair the system?
- N

09 o
© 0O

O © O
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Conclusion

Boolean networks:
» simple, yet powerful formalism to study biological processes

» simple to set up: their construction requires very few data
compared to other formalisms

» once built, one can run prediction analysis, control, etc. ..

Structural & dynamical Boolean
. Control
constraints Networks(BN)
s s fai=C
k?? % % fa=BaC
+-2(8) 2. fe=AN-C
O

0 20 a0 0 80 100

Temps
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PhD Project ler octobre 2018 — juin 2022

“Selection and analysis of models for biology using knowledge on the domain;
application to pathological systems.”

control

biological existing model - target models .

system — i eq. —» O _ BN —— from pathological
to healthy states

answer-set programming

(ASP)
Structural & dynamical Boolean
. Control
constraints Networks (BN)
+ . 120

fa:=C %
fB =B&C

)
0 20 10 80 10

Temps

Concentration
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