From Chemical Reaction Networks to Boolean Networks, Automatically

Athénaïs Vaginay, Taha Boukhobza, Malika Smaïl-Tabbone

GT-BIOSS — December 3, 2021

01101001
01100001011
211000010111
11100100111
'000010111'

Formalisms to model biological processes

Chemical Reaction Network

```
e1 for A+B }->\mathrm{ C
e2 for C }->\mathrm{ D
e3 for _ C C
```

Boolean network

Process algebra

$$
\begin{aligned}
& ((b(x, d e)[E]) \|(B(y, d I)[I])) \\
& b h(x, d E) \operatorname{bh}(y, d I)(E \| I)
\end{aligned}
$$

Constraint based model

Interacting state machine Compartment based

Rule-based

Chemical Reaction Network (CRN)

$$
\mathscr{M}=\left\{\mathscr{R}_{i}=e_{i}: R_{i} \stackrel{M_{i}}{\Longrightarrow} P_{i}\right\}_{i=1 \ldots m}
$$

Chemical Reaction Network (CRN)

$$
\mathscr{M}=\left\{\mathscr{R}_{i}=e_{i}: R_{i} \xlongequal{M_{i}} P_{i}\right\}_{i=1 \ldots m}
$$

$$
\begin{array}{r}
\mathscr{R}_{\text {on }}=\mathrm{k}_{\mathrm{on}}[\mathrm{~S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
\mathscr{R}_{\text {off }}=\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
\mathscr{R}_{\text {cat }}=\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{array}
$$

Chemical Reaction Network (CRN)

$$
\begin{array}{r}
\mathscr{M}=\left\{\mathscr{R}_{i}=e_{i}: R_{i} \stackrel{M_{i}}{\Longrightarrow} P_{i}\right\}_{i=1 \ldots m} \\
\mathscr{R}_{\mathrm{on}}=\mathrm{k}_{\mathrm{on}}[\mathrm{~S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
\mathscr{R}_{\mathrm{off}}=\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
\mathscr{R}_{\mathrm{cat}}=\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{array}
$$

reactants, products, modifiers, kinetics

Chemical Reaction Network (CRN)

$$
\begin{array}{r}
\mathscr{M}=\left\{\mathscr{R}_{i}=e_{i}: R_{i} \stackrel{M_{\lambda}}{\Longrightarrow} P_{i}\right\}_{i=1 \ldots m} \\
\mathscr{R}_{\text {on }}=\mathrm{k}_{\mathrm{on}}[\mathrm{~S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
\mathscr{R}_{\mathrm{off}}=\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
\mathscr{R}_{\text {cat }}=\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{array}
$$

reactants, products, modifiers, kinetics

Chemical Reaction Network (CRN)

$$
\begin{array}{r}
\mathscr{M}=\left\{\mathscr{R}_{i}=e_{i}: R_{i} \xlongequal{M_{i}} P_{i}\right\}_{i=1 \ldots m} \\
\mathscr{R}_{\mathrm{on}}=\mathrm{k}_{\mathrm{on}}[\mathrm{~S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
\mathscr{R}_{\mathrm{off}}=\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
\mathscr{R}_{\mathrm{cat}}=\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{array}
$$

reactants, products, modifiers, kinetics

Chemical Reaction Network (CRN)

$$
\begin{array}{r}
\mathscr{M}=\left\{\mathscr{R}_{i}=e_{i}: R_{i} \xlongequal{M_{i}} P_{i}\right\}_{i=1 \ldots m} \\
\mathscr{R}_{\mathrm{on}}=\mathrm{k}_{\mathrm{on}}[\mathrm{~S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
\mathscr{R}_{\mathrm{off}}=\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
\mathscr{R}_{\mathrm{cat}}=\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{array}
$$

reactants, products, modifiers, kinetics

Chemical Reaction Network (CRN)

$$
\begin{array}{r}
\mathscr{M}=\left\{\mathscr{R}_{i}=e_{i}: R_{i} \xlongequal{M_{i}} P_{i}\right\}_{i=1 \ldots m} \\
\mathscr{R}_{\mathrm{on}}=\mathrm{k}_{\mathrm{on}}[\mathrm{~S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
\mathscr{R}_{\mathrm{off}}=\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
\mathscr{R}_{\mathrm{cat}}=\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{array}
$$

reactants, products, modifiers, kinetics

Chemical Reaction Network (CRN)

$$
\begin{array}{r}
\mathscr{M}=\left\{\mathscr{R}_{i}=e_{i}: R_{i} \stackrel{M_{i}}{\Longrightarrow} P_{i}\right\}_{i=1 \ldots m} \\
\mathscr{R}_{\text {on }}=\mathrm{k}_{\mathrm{on}}[\mathrm{~S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
\mathscr{R}_{\text {off }}=\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
\mathscr{R}_{\text {cat }}=\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{array}
$$

reactants, products, modifiers, kinetics

CRN are versatile and well-studied. However...

Boolean Network (BN)

a set V of n components
Boolean status $\mathbb{B}=\{0,1\}$
local update function $f_{i}: \mathbb{B}^{n} \rightarrow \mathbb{B} \forall i \in V$
\neg : "not"; \vee : "or"; \wedge : "and"

Boolean Network (BN)

a set V of n components
Boolean status $\mathbb{B}=\{0,1\}$
local update function $f_{i}: \mathbb{B}^{n} \rightarrow \mathbb{B} \forall i \in V$
\neg : "not"; \vee : "or"; \wedge : "and"

Boolean network

$$
\mathscr{B}=\left\{\begin{array}{l}
f_{\mathrm{E}}:=\neg \mathrm{E} \\
f_{\mathrm{ES}}:=\mathrm{E} \wedge \mathrm{~S} \\
f_{\mathrm{P}}:=\mathrm{ES} \wedge(\neg \mathrm{E} \vee \mathrm{P}) \\
f_{\mathrm{S}}:=\neg \mathrm{E}
\end{array}\right.
$$

Boolean Network (BN)

a set V of n components
Boolean status $\mathbb{B}=\{0,1\}$
local update function $f_{i}: \mathbb{B}^{n} \rightarrow \mathbb{B} \forall i \in V$
\neg : "not"; \vee : "or"; \wedge : "and"

Boolean network, its interaction graph
$=$ structure

$$
f_{\mathrm{S}}:=\neg \mathrm{E}
$$

Boolean Network (BN)

a set V of n components
Boolean status $\mathbb{B}=\{0,1\}$
local update function $f_{i}: \mathbb{B}^{n} \rightarrow \mathbb{B} \forall i \in V$
\neg : "not"; \vee : "or"; \wedge : "and"

Boolean network, its interaction graph and gen. asyn. state transition graph
$=$ structure
$=$ dynamics

Goal

Synthesise Boolean networks starting from an existing chemical reaction network input: a chemical reaction network output: a set of compatible Boolean networks

CRN BNs

Goal, Proposed Pipeline

Synthesise Boolean networks starting from an existing chemical reaction network input: a chemical reaction network output: a set of compatible Boolean networks

Goal, Proposed Pipeline, Implementation (=SBML2BN ${ }^{1}$)

Synthesise Boolean networks starting from an existing chemical reaction network input: a chemical reaction network encoded in SBML output: a set of compatible Boolean networks

BNs synthesis ASKeD-BN	$\rightarrow \mathrm{BNs} \rightarrow$	BNs evaluation P PyBoolNet CoL M-To

Details about the steps - structure extraction

$$
\begin{array}{r}
\mathscr{R}_{\text {on }}=\mathrm{k}_{\text {on }}[\mathrm{S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
\mathscr{R}_{\text {off }}=\mathrm{k}_{\text {off }}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
\mathscr{R}_{\text {cat }}=\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{array}
$$

Details about the steps - structure extraction

$$
\begin{array}{r}
\mathscr{R}_{\text {on }}=\mathrm{k}_{\text {on }}[\mathrm{S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
\mathscr{R}_{\text {off }}=\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
\mathscr{R}_{\text {cat }}=\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{array}
$$

Syntactical Influence Graph (SIG)

1. If X is a reactant or an activator and Y disappears then $X \xrightarrow{-} Y$
2. If X is an inhibitor and Y appears then $X \xrightarrow{-} Y$
3. If X is a reactant or an activator and Y appears then $X \xrightarrow{+} Y$
4. If X is an inhibitor and Y disappears then $X \xrightarrow{+} Y$
[Fages et al. 2008]

Details about the steps - structure extraction

$$
\begin{array}{r}
\mathscr{R}_{\text {on }}=\mathrm{k}_{\text {on }}[\mathrm{S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
\mathscr{R}_{\text {off }}=\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
\mathscr{R}_{\text {cat }}=\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{array}
$$

Syntactical Influence Graph (SIG)

1. If X is a reactant or an activator and Y disappears then $X \xrightarrow{-} Y$
2. If X is an inhibitor and Y appears then $X \xrightarrow{-} Y$
3. If X is a reactant or an activator and Y appears then $X \xrightarrow{+} Y$
4. If X is an inhibitor and Y disappears then $X \xrightarrow{+} Y$
[Fages et al. 2008]

Details about the steps - structure extraction

$$
\begin{array}{r}
\mathscr{R}_{\text {on }}=\mathrm{k}_{\text {on }}[\mathrm{S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
\mathscr{R}_{\text {off }}=\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
\mathscr{R}_{\text {cat }}=\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{array}
$$

Syntactical Influence Graph (SIG)

1. If X is a reactant or an activator and Y disappears then $X \xrightarrow{-} Y$
2. If X is an inhibitor and Y appears then $X \xrightarrow{-} Y$
3. If X is a reactant or an activator and Y appears then $X \xrightarrow{+} Y$
4. If X is an inhibitor and Y disappears then $X \xrightarrow{+} Y$
[Fages et al. 2008]

Details about the steps - dynamics extraction

binarised Time-series (TS)

$$
\begin{array}{r}
\mathscr{R}_{\text {on }}=\mathrm{k}_{\text {on }}[\mathrm{S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
\mathscr{R}_{\text {off }}=\mathrm{k}_{\text {off }}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
\mathscr{R}_{\text {cat }}=\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{array}
$$

Details about the steps - dynamics extraction

$$
\begin{aligned}
& \text { binarised Time-series (TS) } \\
& \mathscr{R}_{\text {on }}=\mathrm{k}_{\mathrm{on}}[\mathrm{~S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
& \mathscr{R}_{\text {off }}=\mathrm{k}_{\text {off }}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
& \mathscr{R}_{\text {cat }}=\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{aligned}
$$

(1) reconstruct ODE

$$
\forall i \in V: \frac{\mathrm{d} i}{\mathrm{~d} t}=\sum_{r=1}^{m} f_{r} \times \delta_{r}(i)
$$

Details about the steps - dynamics extraction

binarised Time-series (TS)

$$
\begin{array}{r}
\mathscr{R}_{\text {on }}=\mathrm{k}_{\mathrm{on}}[\mathrm{~S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
\mathscr{R}_{\text {off }}=\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
\mathscr{R}_{\text {cat }}=\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{array}
$$

(1) reconstruct ODE

$$
\begin{gathered}
\forall i \in V: \frac{\mathrm{d} i}{\mathrm{~d} t}=\sum_{r=1}^{m} f_{r} \times \delta_{r}(i) \\
\frac{\mathrm{d}[\mathrm{ES}]}{\mathrm{d} t}=\underbrace{\mathrm{k}_{\text {on }}[\mathrm{E}][\mathrm{S}] \times 1}_{\mathscr{R}_{\text {on }}}+\underbrace{\mathrm{k}_{\text {off }}[\mathrm{ES}] \times-1}_{\mathscr{R}_{\text {off }}}+\underbrace{\mathrm{k}_{\text {cat }}[\mathrm{ES}] \times-1}_{\mathscr{R}_{\text {cat }}}
\end{gathered}
$$

Details about the steps - dynamics extraction

$$
\begin{aligned}
& \text { binarised Time-series (TS) } \\
& \begin{array}{r}
\mathscr{R}_{\text {on }}=\mathrm{k}_{\text {on }}[\mathrm{S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
\mathscr{R}_{\text {off }}=\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
\mathscr{R}_{\text {cat }}=\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{array}
\end{aligned}
$$

(1) reconstruct ODE, (2) numerical simulation (parametrisation from the SBML model, duration of the simulation chosen by the user)

$$
\forall i \in V: \frac{\mathrm{d} i}{\mathrm{~d} t}=\sum_{r=1}^{m} f_{r} \times \delta_{r}(i)
$$

Details about the steps - dynamics extraction

$$
\begin{aligned}
& \text { binarised Time-series (TS) } \\
& \begin{array}{r}
\mathscr{R}_{\text {on }}=\mathrm{k}_{\text {on }}[\mathrm{S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
\mathscr{R}_{\text {off }}=\mathrm{k}_{\text {off }}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
\mathscr{R}_{\text {cat }}=\mathrm{k}_{\text {cat }}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{array}
\end{aligned}
$$

(1) reconstruct ODE, (2) numerical simulation (parametrisation from the SBML model, duration of the simulation chosen by the user), (3) binarisation

$$
\forall i \in V: \frac{\mathrm{d} i}{\mathrm{~d} t}=\sum_{r=1}^{m} f_{r} \times \delta_{r}(i)
$$

Details about the steps - BNs Synthesis

Find $f_{i}: \mathbb{B}^{n} \rightarrow \mathbb{B} \forall i \in V$ compatible with structural constraints (= domain) and dynamical constraints (= to reproduce)

Details about the steps - BNs Synthesis

Find $f_{i}: \mathbb{B}^{n} \rightarrow \mathbb{B} \forall i \in V$ compatible with structural constraints (= domain) and dynamical constraints (= to reproduce)

$$
\begin{aligned}
& \text { Disjunctive Normal Form (DNF)= disjunction of conjunctions } \\
& \qquad f_{\mathrm{ES}}:=\underbrace{(\neg \mathrm{ES} \wedge \mathrm{E} \wedge \mathrm{~S})}_{\text {conj. } 1} \vee \underbrace{(\mathrm{E} \wedge \neg \mathrm{P})}_{\text {conj. } 2}
\end{aligned}
$$

Details about the steps - BNs Synthesis

Find $f_{i}: \mathbb{B}^{n} \rightarrow \mathbb{B} \forall i \in V$ compatible with structural constraints (= domain) and dynamical constraints (= to reproduce)

Disjunctive Normal Form (DNF) $=$ disjunction of conjunctions

$$
f_{\mathrm{ES}}:=\underbrace{(\neg \mathrm{ES} \wedge \mathrm{E} \wedge \mathrm{~S})}_{\text {conj. } 1} \vee \underbrace{(\mathrm{E} \wedge \neg \mathrm{P})}_{\text {conj. } 2}
$$

Hard constraint: j appears positively (resp. negatively)
in f_{i} iff $j \xrightarrow{+} i($ resp. $j \xrightarrow{-} i)$

Details about the steps - BNs Synthesis

Find $f_{i}: \mathbb{B}^{n} \rightarrow \mathbb{B} \forall i \in V$ compatible with structural constraints (= domain) and dynamical constraints (= to reproduce)

Disjunctive Normal Form (DNF) $=$ disjunction of conjunctions

$$
f_{\mathrm{ES}}:=\underbrace{(\neg \mathrm{ES} \wedge \mathrm{E} \wedge \mathrm{~S})}_{\text {conj. } 1} \vee \underbrace{(\mathrm{E} \wedge \neg \mathrm{P})}_{\text {conj. } 2}
$$

Hard constraint: j appears positively (resp. negatively) in f_{i} iff $j \xrightarrow{+} i$ (resp. $j \xrightarrow{-} i$)

Soft constraint: f_{i} minimise the unexplained transitions \rightarrow penalty if:
$c \in f_{i}$ observed at t but $i_{t+1}=0$
$i_{t+1}=1$ but no $c \in f_{i}$ observed at t

Details about the steps - BNs Synthesis: soft constraint

i_{t} : observation if i at time t
θ_{i} : binarisation threshold for i

Details about the steps - BNs Synthesis: soft constraint

i_{t} : observation if i at time t
θ_{i} : binarisation threshold for i
T : \# time steps

Details about the steps - BNs Synthesis: soft constraint

i_{t} : observation if i at time t
θ_{i} : binarisation threshold for i
T : \# time steps

Details about the steps - BNs Synthesis: soft constraint

i_{t} : observation if i at time t
θ_{i} : binarisation threshold for i
T : \# time steps
\mathscr{U} : set of unexplained time steps

Details about the steps - BNs Synthesis: soft constraint

i_{t} : observation if i at time t
θ_{i} : binarisation threshold for i
T : \# time steps
\mathscr{U} : set of unexplained time steps
minimise the Mean Absolute Error (ideally 0)

Details about the steps - BNs Synthesis

Logic program (Answer-Set Programming) ASKeD-BN ${ }^{2}$ constraints: structural (= domain) and dynamical (= to reproduce)
output: exhaustive set of BNs whose interaction graph is a subgraph of the SIG and their dynamics minimise the unexplained transitions.

Details about the steps - BNs Synthesis

Logic program (Answer-Set Programming) ASKeD-BN ${ }^{2}$ constraints: structural (= domain) and dynamical (= to reproduce)

output: exhaustive set of BNs whose interaction graph is a subgraph of the SIG and their dynamics minimise the unexplained transitions.

$$
\mathscr{B}_{1}=\left\{\begin{array}{l}
f_{\mathrm{ES}}:=\mathrm{S} \\
f_{\mathrm{P}}:=\mathrm{ES} \\
f_{\mathrm{S}}:=\mathrm{ES} \\
f_{\mathrm{E}}:=\neg \mathrm{S}
\end{array}\right.
$$

${ }^{2}$ [Vaginay et al. OLA 2021]

Details about the steps - BNs evaluation

- hard constraint: assert the interaction graph of synthesised BNs are subgraph of the SIG \checkmark (by construction)
- compute the "coverage proportion" of each synthesised BN

$$
=\frac{\# \text { recovered transitions }}{\# \text { transitions observed }}
$$

(= 1 if the BN reproduces perfectly the sequence of configurations)

Pipeline evaluation and results

Pipeline ran on 209 SBML models from Biomodels.
\# components: 2 - 60
\# parents: 10 max
\rightarrow simple to medium complexity
Results about the runtime and the coverage of the BNs synthesised for each input SBML model.

Results - runtime

$\sim 75 \%$ ($=155 / 209$) ≤ 30 hours
\sim half $\leq 30 \mathrm{mins}$

Results - coverage proportion

Results - coverage proportion

Med=0.77; Var=0, even when > 1 BN synthesised (except for 12 models)

Results - coverage proportion

Med=0.77; Var=0, even when >1 BN synthesised (except for 12 models) Loss of performance when max \# parents increases.

Impact of SBML inconsistencies on structure extraction

Ex. $\mathrm{BIOMD} \mathrm{n}^{\circ} 44$: 1 BN generated; coverage $=0.55$ some kinetics use components not listed in the reactants nor modifiers \rightarrow incomplete SIG (missing parents)

$$
f(\mathrm{~A}, \mathrm{~B}, \mathrm{E}): \mathrm{A}+\mathrm{B} \Rightarrow \mathrm{C}
$$

Impact of SBML inconsistencies on structure extraction

Ex. $\mathrm{BIOMD} \mathrm{n}^{\circ} 44$: 1 BN generated; coverage $=0.55$ some kinetics use components not listed in the reactants nor modifiers \rightarrow incomplete SIG (missing parents)

$>60 \%$ of SBML models from Biomodels are not "well-formed"3, but some can be fixed \rightarrow add a step in the pipeline

Conclusion

Automatic transformation of a CRN into a set of BNs SBML2BN $=$ a proof of concept with possible improvements...

- for even more complex models (models with > 10 parents)
- fix not well-formed SBML models
- take more constraints into account (fixed-points)
- correct abstraction?

Thanks for your attention. Hope to $\{$ see, read $\}$ you. athenais.vaginay@loria.fr

Thanks for the opportunity to present our work! :)

Details about the steps - dynamics extraction

$$
\begin{aligned}
& \text { binarised Time-series (TS) } \\
& \mathscr{R}_{\text {on }}=\mathrm{k}_{\mathrm{on}}[\mathrm{~S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
& \mathscr{R}_{\text {off }}=\mathrm{k}_{\text {off }}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
& \mathscr{R}_{\text {cat }}=\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{aligned}
$$

numerical simulation of the reconstructed ODE (parametrisation from the SBML model, duration of the simulation chosen by the user) + binarisation

$$
\begin{aligned}
\frac{\mathrm{d}[\mathrm{E}]}{\mathrm{d} t} & =-\mathrm{k}_{\mathrm{on}}[\mathrm{E}][\mathrm{S}]+\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]+\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}] \\
\frac{\mathrm{d}[\mathrm{ES}]}{\mathrm{d} t} & =\mathrm{k}_{\mathrm{on}}[\mathrm{E}][\mathrm{S}]-\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]-\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}] \\
\frac{\mathrm{d}[\mathrm{P}]}{\mathrm{d} t} & =2 \mathrm{k}_{\mathrm{cat}}[\mathrm{ES}] \\
\frac{\mathrm{d}[\mathrm{~S}]}{\mathrm{d} t} & =-\mathrm{k}_{\mathrm{on}}[\mathrm{E}][\mathrm{S}]+\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]
\end{aligned}
$$

Details about the steps - dynamics extraction

$$
\begin{aligned}
& \text { binarised Time-series (TS) } \\
& \mathscr{R}_{\text {on }}=\mathrm{k}_{\mathrm{on}}[\mathrm{~S}][\mathrm{E}]: \mathrm{S}+\mathrm{E} \Rightarrow \mathrm{ES} \\
& \mathscr{R}_{\text {off }}=\mathrm{k}_{\text {off }}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{~S}+\mathrm{E} \\
& \mathscr{R}_{\text {cat }}=\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}]: \mathrm{ES} \Rightarrow \mathrm{E}+2 \cdot \mathrm{P}
\end{aligned}
$$

numerical simulation of the reconstructed ODE (parametrisation from the SBML model, duration of the simulation chosen by the user) + binarisation

$$
\begin{aligned}
\frac{\mathrm{d}[\mathrm{E}]}{\mathrm{d} t} & =-\mathrm{k}_{\mathrm{on}}[\mathrm{E}][\mathrm{S}]+\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]+\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}] \\
\frac{\mathrm{d}[\mathrm{ES}]}{\mathrm{d} t} & =\mathrm{k}_{\mathrm{on}}[\mathrm{E}][\mathrm{S}]-\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]-\mathrm{k}_{\mathrm{cat}}[\mathrm{ES}] \\
\frac{\mathrm{d}[\mathrm{P}]}{\mathrm{d} t} & =2 \mathrm{k}_{\mathrm{cat}}[\mathrm{ES}] \\
\frac{\mathrm{d}[\mathrm{~S}]}{\mathrm{d} t} & =-\mathrm{k}_{\mathrm{on}}[\mathrm{E}][\mathrm{S}]+\mathrm{k}_{\mathrm{off}}[\mathrm{ES}]
\end{aligned}
$$

CRNs in Biomodels

1039 manually curated models (data from 08th Nov. 2021) available in the System Biology Markup Language (SBML)

Semantics of CRN $\quad \mathscr{M}=\{f(\mathrm{~A}, \mathrm{~B}): \mathrm{A}+\mathrm{B} \Rightarrow \mathrm{C}\}$

Stochastic

Continuous Time Markov Chain numbers of molecules
$\mathrm{A}, \mathrm{B} \xrightarrow{p\left(S_{i}\right), t\left(S_{i}\right)} \mathrm{C}_{++}, \mathrm{A}--, \mathrm{B}--$

Continuous

Ordinary Differential Equations concentrations over time

$$
\forall i \in V: \frac{\mathrm{d} i}{\mathrm{~d} t}=\sum_{r=1}^{m} f_{r} \delta_{r}(i)
$$

> Discrete
> Petri net
> numbers of molecules
> $\mathrm{A}, \mathrm{B} \rightarrow \mathrm{C}_{++}, \mathrm{A}--, \mathrm{B}--$

Boolean
Asynchronous Transition System presence / absence of molecules $A \wedge B \rightarrow C \wedge A / \neg A \wedge B / \neg B$

Hierachy of CRN semantics

Galois connection between the syntactical, stochastic, discrete and Boolean semantics ${ }^{4}$ If a behaviour is not possible in the Boolean semantics, it is not possible in the stochastic semantics for any reaction rates Under large number conditions, the ODE semantics approximates the mean stochastic behaviour ${ }^{5}$.

Slide adapted from Francois Fages' presentation Bioregul 2019

[^0]
Details about the steps - BNs Synthetis

Method: ASKeD-BN [Vaginay et al. OLA 2021] (Answer-Set Programming)

Modelling of biological systems

Modelling of biological systems - Example: enzymatic reaction

$$
S+E \rightleftarrows E S \longrightarrow E+2 \cdot P
$$

Modelling of biological systems - Example: enzymatic reaction

$$
S+E \rightleftarrows E S \longrightarrow E+2 \cdot P
$$

constraints: known structure (= domain) and dynamics (= to reproduce)

Boolean Networks Synthesis

constraints: known structure (= domain) and dynamics (= to reproduce)

Boolean Networks Synthesis

constraints: known structure (= domain) and dynamics (= to reproduce)

output: (exhaustive set of) BNs compatible with the constraints

Boolean Networks Synthesis

constraints: known structure (= domain) and dynamics (= to reproduce)

output: (exhaustive set of) BNs compatible with the constraints

$$
\mathscr{B}_{1}=\left\{\begin{array}{l}
f_{\mathrm{ES}}:=\mathrm{S} \\
f_{\mathrm{P}}:=\mathrm{ES} \\
f_{\mathrm{S}}:=\mathrm{ES} \\
f_{\mathrm{E}}:=\neg \mathrm{S}
\end{array}\right.
$$

And then what?

Analysis on Boolean networks (even large ones !)

- reachability, attractors
- control

Despite their simplicity, BNs can fit complex biological phenomena. Used for: cell cycle, cancer (breast, bladder, ...), ...

BN control

BN control

BN contro

BN control

BN control

Conclusion

Boolean networks:

- simple, yet powerful formalism to study biological processes
- simple to set up: their construction requires very few data compared to other formalisms
- once built, one can run prediction analysis, control, etc...

Structural \& dynamical
constraints

Boolean
Networks(BN)

$$
\left\{\begin{array}{l}
f_{\mathrm{A}}:=\mathrm{C} \\
f_{\mathrm{B}}:=\mathrm{B} \oplus \mathrm{C} \\
f_{\mathrm{C}}:=\mathrm{A} \wedge \neg \mathrm{C}
\end{array}\right.
$$

PhD Project

"Selection and analysis of models for biology using knowledge on the domain; application to pathological systems."

Structural \& dynamical constraints

$$
\left\{\begin{array}{l}
f_{\mathrm{A}}:=\mathrm{C} \\
f_{\mathrm{B}}:=\mathrm{B} \oplus \mathrm{C} \\
f_{\mathrm{C}}:=\mathrm{A} \wedge \neg \mathrm{C}
\end{array}\right.
$$

[^0]: ${ }^{4}$ [Fages \& Soliman 2006, 2008]
 ${ }^{5}$ [Gillespie 71]

