ASKeD-BN: Automatic Synthesis of Boolean Networks from Biological Knowledge and Data J? BIM

Athénaïs Vaginay, Taha Boukhobza, Malika Smaïl-Tabbone Jun 21-23 2021

Modeling Biological Systems with Boolean Networks

Boolean Networks (BN) are:

- qualitative formalism, well-suited for biological systems
- built from experimental data and knowledge from literature
- the automatic synthesis of BNs from biological data and knowledge is still a challenge

from Novak et al. 2001

Boolean Networks - Generalities

$\mathscr{B}= \begin{cases}f_{\mathrm{A}}: a_{t+1}=c_{t} & \text { in the Boolean world: } \mathbb{B}=\{0,1\} \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} & \\ n \text { Boolean components } \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t} & \\ \mathrm{BN}=\text { set of } n \text { update functions }\end{cases}$
negation: \neg disjunction: \vee conjunction: \wedge

Boolean Networks - Generalities

$\mathscr{B}= \begin{cases}f_{\mathrm{A}}: a_{t+1}=c_{t} & \text { in the Boolean world: } \mathbb{B}=\{0,1\} \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} & \\ n \text { Boolean components } \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t} & \\ \mathrm{BN}=\text { set of } n \text { update functions }\end{cases}$
negation: \neg disjunction: \vee conjunction: \wedge

Boolean Networks - Generalities

$\mathscr{B}= \begin{cases}f_{\mathrm{A}}: a_{t+1}=c_{t} & \text { in the Boolean world: } \mathbb{B}=\{0,1\} \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} & \\ n \text { Boolean components } \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t} & \\ \mathrm{BN}=\text { set of } n \text { update functions }\end{cases}$
negation: \neg disjunction: \vee conjunction: \wedge

Boolean Networks - Generalities

$\mathscr{B}= \begin{cases}f_{\mathrm{A}}: a_{t+1}=c_{t} & \text { in the Boolean world: } \mathbb{B}=\{0,1\} \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} & \\ n \text { Boolean components } \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t} & \\ \mathrm{BN}=\text { set of } n \text { update functions }\end{cases}$
negation: \neg disjunction: \vee conjunction: \wedge

Boolean Networks - More About Update Functions

$\mathscr{B}=\left\{\begin{array}{l}f_{\mathrm{A}}: a_{t+1}=c_{t} \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t}\end{array}\right.$

Boolean Networks - More About Update Functions

$$
\mathscr{B}=\left\{\begin{array}{l}
f_{\mathrm{A}}: a_{t+1}=c_{t} \quad \text { "C activates A" } \\
f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} \\
f_{\mathrm{C}}: c_{t+1}=\neg c_{t}
\end{array}\right.
$$

Boolean Networks - More About Update Functions

$\mathscr{B}= \begin{cases}f_{\mathrm{A}}: a_{t+1}=c_{t} & \text { status of child component at } t+1 \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} & =\mathrm{f}(\text { status of parents components at } t) \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t} & \end{cases}$

Boolean Networks - More About Update Functions

$\mathscr{B}= \begin{cases}f_{\mathrm{A}}: a_{t+1}=c_{t} & \text { status of child component at } t+1 \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} & =\mathrm{f}(\text { status of parents components at } t) \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t} & \end{cases}$

Boolean Networks - More About Update Functions

$\mathscr{B}= \begin{cases}f_{\mathrm{A}}: a_{t+1}=c_{t} & \text { status of child component at } t+1 \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} & =\mathrm{f}(\text { status of parents components at } t) \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t} & \end{cases}$

Boolean Networks - More About Update Functions

$\mathscr{B}= \begin{cases}f_{\mathrm{A}}: a_{t+1}=c_{t} & \text { status of child component at } t+1 \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} & =\mathrm{f}(\text { status of parents components at } t) \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t} & \end{cases}$

Boolean Networks - More About Update Functions

$\mathscr{B}= \begin{cases}f_{\mathrm{A}}: a_{t+1}=c_{t} & \text { status of child component at } t+1 \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} & =\mathrm{f}(\text { status of parents components at } t) \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t} & \end{cases}$

Boolean Networks - Their Structure and Dynamics

$\mathscr{B}=\left\{\begin{array}{l}f_{\mathrm{A}}: a_{t+1}=c_{t} \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t}\end{array}\right.$

Boolean Networks - Their Structure and Dynamics

Interaction Graph (IG)
nodes: components of the BN
edges: influences + polarity

$$
\mathscr{B}=\left\{\begin{array}{l}
f_{\mathrm{A}}: a_{t+1}=c_{t} \\
f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} \\
f_{\mathrm{C}}: c_{t+1}=\neg c_{t}
\end{array}\right.
$$

Boolean Networks - Their Structure and Dynamics

Interaction Graph (IG)
nodes: components of the BN
edges: influences + polarity

$$
\mathscr{B}=\left\{\begin{array}{l}
f_{\mathrm{A}}: a_{t+1}=c_{t} \\
f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} \\
f_{\mathrm{C}}: c_{t+1}=\neg c_{t}
\end{array}\right.
$$

Boolean Networks - Their Structure and Dynamics

Interaction Graph (IG)
nodes: components of the BN
edges: influences + polarity

$$
\mathscr{B}=\left\{\begin{array}{l}
f_{\mathrm{A}}: a_{t+1}=c_{t} \\
f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} \\
f_{\mathrm{C}}: c_{t+1}=\neg c_{t}
\end{array}\right.
$$

Boolean Networks - Their Structure and Dynamics

Interaction Graph (IG)
nodes: components of the BN
edges: influences + polarity
$\mathscr{B}=\left\{\begin{array}{l}f_{\mathrm{A}}: a_{t+1}=c_{t} \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t}\end{array}\right.$

State Transition Graph (STG)
nodes: configurations of the BN (vector $\in \mathbb{B}^{n}$)
e.g. 001, 010, 111, ..
edge from c to c^{\prime} if $c^{\prime}=f(c)$

Boolean Networks - Synthesis from Knowledge and Data

$\mathscr{B}=\left\{\begin{array}{l}f_{\mathrm{A}}: a_{t+1}=c_{t} \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t}\end{array}\right.$

Boolean Networks - Synthesis from Knowledge and Data

"A activates C"
"B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

Boolean Networks - Synthesis from Knowledge and Data

"A activates C"
"B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

Boolean Networks - Synthesis from Knowledge and Data

"A activates C"
"B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

Boolean Networks - Synthesis from Knowledge and Data

$$
\mathscr{B}=\left\{\begin{array}{l}
f_{\mathrm{A}}: a_{t+1}=c_{t} \\
f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} \\
f_{\mathrm{C}}: c_{t+1}=\neg c_{t}
\end{array}\right.
$$

"A activates C"
"B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

Boolean Networks - Synthesis from Knowledge and Data

"A activates C"
"B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

Boolean Networks - Synthesis from Knowledge and Data

"A activates C"
"B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

Boolean Networks - Synthesis from Knowledge and Data

"A activates C"
"B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

Boolean Networks - Synthesis from Knowledge and Data Prior Knowledge Network (PKN)
Super-set of influences allowed
"A activates C"
" B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

Boolean Networks - Synthesis from Knowledge and Data

$\mathscr{B}=\left\{\begin{array}{l}f_{\mathrm{A}}: a_{t+1}=c_{t} \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t}\end{array}\right.$

Prior Knowledge Network (PKN)

Super-set of influences allowed
"A activates C"
" B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

Multivariate Time Series (TS)

Concentrations of the components over time

	\mathbf{x}													
t	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots
A	0	3	7	13	20	30	49	61	100	63	36	25	2	\ldots
B	100	86	64	57	54	53	51	49	45	37	33	28	22	\ldots
C	0	27	36	42	60	75	54	44	38	48	60	72	88	\ldots

Boolean Networks - Synthesis from Knowledge and Data

$\mathscr{B}=\left\{\begin{array}{l}f_{\mathrm{A}}: a_{t+1}=c_{t} \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t}\end{array}\right.$

Prior Knowledge Network (PKN)

Super-set of influences allowed
"A activates C"
" B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

Multivariate Time Series (TS)

Concentrations of the components over time

	\mathbf{t}													
t	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots
A	0	3	7	13	20	30	49	61	100	63	36	25	2	\ldots
B	100	86	64	57	54	53	51	49	45	37	33	28	22	\ldots
C	0	27	36	42	60	75	54	44	38	48	60	72	88	\ldots

Boolean Networks - Synthesis from Knowledge and Data

$\mathscr{B}=\left\{\begin{array}{l}f_{\mathrm{A}}: a_{t+1}=c_{t} \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t}\end{array}\right.$

Prior Knowledge Network (PKN)

Super-set of influences allowed
"A activates C"
" B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

Multivariate Time Series (TS)

Concentrations of the components over time

	\mathbf{x}													
t	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots
A	0	3	7	13	20	30	49	61	100	63	36	25	2	\ldots
B	100	86	64	57	54	53	51	49	45	37	33	28	22	\ldots
C	0	27	36	42	60	75	54	44	38	48	60	72	88	\ldots

Boolean Networks - Synthesis from Knowledge and Data

$\mathscr{B}=\left\{\begin{array}{l}f_{\mathrm{A}}: a_{t+1}=c_{t} \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t}\end{array}\right.$

Prior Knowledge Network (PKN)

Super-set of influences allowed
"A activates C"
" B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

Multivariate Time Series (TS)

Concentrations of the components over time

	\mathbf{x}													
t	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots
A	0	3	7	13	20	30	49	61	100	63	36	25	2	\ldots
B	100	86	64	57	54	53	51	49	45	37	33	28	22	\ldots
C	0	27	36	42	60	75	54	44	38	48	60	72	88	\ldots

Boolean Networks - Synthesis from Knowledge and Data

$\mathscr{B}=\left\{\begin{array}{l}f_{\mathrm{A}}: a_{t+1}=c_{t} \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t}\end{array}\right.$

Multivariate Time Series (TS)

Concentrations of the components over time

t	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots
A	0	3	7	13	20	30	49	61	100	63	36	25	2	\ldots
B	100	86	64	57	54	53	51	49	45	37	33	28	22	\ldots
C	0	27	36	42	60	75	54	44	38	48	60	72	88	\ldots

Boolean Networks - Synthesis from Knowledge and Data

Prior Knowledge Network (PKN)

Super-set of influences allowed
"A activates C"
" B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

Multivariate Time Series (TS)

Concentrations of the components over time

t	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots
A														
B					\cdots									
C														\cdots

Boolean Networks - Synthesis from Knowledge and Data

Prior Knowledge Network (PKN)

Super-set of influences allowed
"A activates C"
" B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

Multivariate Time Series (TS)

Concentrations of the components over time

t	1	2	3	4	5	6	7	8	9	10	11	12	13	\ldots
A														\ldots
B														\ldots
C														

Boolean Networks - Synthesis from Knowledge and Data

Prior Knowledge Network (PKN)

Super-set of influences allowed
"A activates C"
" B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

Multivariate Time Series (TS)

Concentrations of the components over time

	010			\rightarrow		$011 \rightarrow$			$100 \rightarrow$			001		
t	1	2	3	4	5	6	7	8	9	10	11	12	13	...
A														
B														
C														

Boolean Networks - Synthesis from Knowledge and Data

Prior Knowledge Network (PKN)

Super-set of influences allowed
"A activates C"
" B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

Multivariate Time Series (TS)

Concentrations of the components over time

	010			\rightarrow		011			100		$\rightarrow 001$			
t	1	2	3	4	5	6	7	8	9	10	11	12	13	...
A														
B														
C														

Boolean Networks - Synthesis from Knowledge and Data

$\mathscr{B}=\left\{\begin{array}{l}f_{\mathrm{A}}: a_{t+1}=c_{t} \\ f_{\mathrm{B}}: b_{t+1}=b_{t} \wedge \neg c_{t} \\ f_{\mathrm{C}}: c_{t+1}=\neg c_{t}\end{array}\right.$

Prior Knowledge Network (PKN)

Super-set of influences allowed
"A activates C"
"B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

Multivariate Time Series (TS)

Concentrations of the components over time

	010			\rightarrow		$011 \rightarrow$			$100 \rightarrow$			001		
t	1	2	3	4	5	6	7	8	9	10	11	12	13	...
A														
B														
C														

Get the best coverage possible

Existing tools

Existing tools

Automatic synthesis of BNs from a Prior Knowledge Network (PKN) and a multivariate Time Series (TS)
 $=$ hard problem (combinatorial explosion)

REVEAL

Best-Fit
caspo-TS

Existing tools

Automatic synthesis of BNs from a Prior Knowledge Network (PKN) and a multivariate Time Series (TS)
$=$ hard problem (combinatorial explosion)

	PKN	TS	assumptions
REVEAL	unsigned	binarized	time unit $=1$
Best-Fit	unsigned	binarized	time unit $=1$
caspo-TS	signed	numeric	local partial-monotony

Existing tools

Automatic synthesis of BNs from a Prior Knowledge Network (PKN) and a multivariate Time Series (TS)
$=$ hard problem (combinatorial explosion)

	PKN	TS	assumptions
REVEAL	unsigned	binarized	time unit $=1$
Best-Fit	unsigned	binarized	time unit $=1$
caspo-TS	signed	numeric	local partial-monotony
ASKeD-BN	signed	both	

Existing tools

Automatic synthesis of BNs from a Prior Knowledge Network (PKN) and a multivariate Time Series (TS)
$=$ hard problem (combinatorial explosion)

	PKN	TS	assumptions
REVEAL	unsigned	binarized	time unit $=1$
Best-Fit	unsigned	binarized	time unit $=1$
caspo-TS	signed	numeric	local partial-monotony
ASKeD-BN	signed	both	

Similar principles:

1. delimitation of the search space using the PKN as constraint
2. optimization of a criteria which measure the adequacy of the synthesized BNs with the TS (coverage)

Existing tools

Automatic synthesis of BNs from a Prior Knowledge Network (PKN) and a multivariate Time Series (TS)
$=$ hard problem (combinatorial explosion)

	PKN	TS	assumptions
REVEAL	unsigned	binarized	time unit $=1$
Best-Fit	unsigned	binarized	time unit $=1$
caspo-TS	signed	numeric	local partial-monotony
ASKeD-BN	signed	both	

Similar principles:

1. delimitation of the search space using the PKN as constraint
2. optimization of a criteria which measure the adequacy of the synthesized BNs with the TS (coverage)

Existing tools

Automatic synthesis of BNs from a Prior Knowledge Network (PKN) and a multivariate Time Series (TS)
$=$ hard problem (combinatorial explosion)

	PKN	TS	assumptions
REVEAL	unsigned	binarized	time unit $=1$
Best-Fit	unsigned	binarized	time unit $=1$
caspo-TS	signed	numeric	local partial-monotony
ASKeD-BN	signed	both	

Similar principles:

1. delimitation of the search space using the PKN as constraint
2. optimization of a criteria which measure the adequacy of the synthesized BNs with the TS (coverage)
Multiple optimal solutions are all returned

ASKeD-BN

ASKeD-BN

Formulation the BN synthesis problem as a logic program with the Answer Set Programming (ASP) framework

ASKeD-BN

Formulation the BN synthesis problem as a logic program with the Answer Set Programming (ASP) framework

Main parts of the logic program:

1. generates all the possible candidate functions
2. removes the ones that do not respect the PKN
3. acts like an exhaustive evaluation of all the candidates and returns the parsimonious candidates which explain best the binarized observations from the given time series

ASKeD-BN

Formulation the BN synthesis problem as a logic program with the Answer Set Programming (ASP) framework

Main parts of the logic program:

1. generates all the possible candidate functions
2. removes the ones that do not respect the PKN
3. acts like an exhaustive evaluation of all the candidates and returns the parsimonious candidates which explain best the binarized observations from the given time series

ASP solvers are designed to solve hard combinatorial satisfaction problem. They prune the search space efficiently (heuristic from SAT solvers).

Evaluation Procedure

Evaluation Procedure

Evaluation Procedure

Evaluation Procedure

Evaluation Procedure

For each BN: compute its mixed STG

Evaluation Procedure

Evaluation Procedure

Evaluation Procedure

Datasets for Evaluation

2 real datasets:

System	PKN		TS	
	\# nodes	\# edges	\# time steps	\# transitions
yeast (cell cycle)	4	28	14	6
A. thaliana (circadian clock)	5	8	50	11

6 synthetic datasets:
Various complexity: from 3 to 10 nodes.
Various conditions: synch. or async. update scheme, with or without repetition, with or without noise

336 experiments at total including 42 with the ARN setting.

Datasets for Evaluation

2 real datasets:

System	PKN		TS	
	\# nodes	\# edges	\# time steps	\# transitions
yeast (cell cycle)	4	28	14	6
A. thaliana (circadian clock)	5	8	50	11

6 synthetic datasets:
Various complexity: from 3 to 10 nodes.
Various conditions: synch. or async. update scheme, with or without repetition, with or without noise ("ARN")

336 experiments at total including 42 with the ARN setting.

Evaluation - Quality of the Synthesised BNs

REVEAL Best-Fit \quad caspo-TS \quad ASKeD-BN

Evaluation - Quality of the Synthesised BNs

REVEAL	Best-Fit \quad caspo-TS \quad ASKeD-BN	
	schematic representation of the coverage ratio of BNs synthesized for a given (PKN + TS). Points are jittered	
0		1

Evaluation - Quality of the Synthesised BNs

REVEAL	Best-Fit \quad caspo-TS	ASKeD-BN
	schematic representation of the coverage ratio of BNs synthesized for a given (PKN + TS). Points are jittered	
0		1

coverage		010		\rightarrow		011	\rightarrow		100	\rightarrow		001
t	1	2	3	4	5	6	7	8	9	10	11	12
A												
B												
C												

Evaluation - Quality of the Synthesised BNs

| REVEAL | Best-Fit \quad caspo-TS \quadschematic representation of the coverage ratio
 of BNs synthesized for a given (PKN + TS).
 Points are jittered | |
| :--- | :--- | :---: | :---: |
| 0 | | 1 |

coverage			010	\rightarrow		011	\rightarrow		100	\rightarrow		001	
t	1	2	3	4	5	6	7	8	9	10	11	12	
A													
B													
C													

Evaluation - Quality of the Synthesised BNs

REVEAL Best-Fit \quad caspo-TS \quad ASKeD-BN
schematic representation of the coverage ratio of BNs synthesized for a given (PKN + TS).

Points are jittered

Evaluation - Quality of the Synthesised BNs

REVEAL Best-Fit \quad caspo-TS \quad ASKeD-BN
schematic representation of the coverage ratio of BNs synthesized for a given (PKN + TS).

Points are jittered

REVEAL coverage	$010 \rightarrow 010 \rightarrow 010 \rightarrow 010 \rightarrow 011 \rightarrow 011 \rightarrow 011 \rightarrow 100 \rightarrow 100 \rightarrow 100 \rightarrow 001 \rightarrow 001 \rightarrow$												
t	1	2	3	4	5	6	7	8	9	10	11	12	
A													
B													
C													

Evaluation - Quality of the Synthesised BNs

REVEAL Best-Fit \quad caspo-TS \quad ASKeD-BN
schematic representation of the coverage ratio of BNs synthesized for a given (PKN + TS).

Points are jittered

Evaluation - Quality of the Synthesised BNs

REVEAL Best-Fit \quad caspo-TS \quad ASKeD-BN
schematic representation of the coverage ratio of BNs synthesized for a given (PKN + TS).

Points are jittered

REVEAL \& Best-Fit coverage	$010 \rightarrow 010 \rightarrow 010 \rightarrow 010 \rightarrow 011 \rightarrow 011 \rightarrow 011 \rightarrow 100 \rightarrow 100 \rightarrow 100 \rightarrow 001 \rightarrow 001 \rightarrow$												
t	1	2	3	4	5	6	7	8	9	10	11	12	
A													
B													
C													

Evaluation - Quality of the Synthesised BNs

REVEAL	Best-Fit	caspo-TS	ASKeD-BN
	schematic representation of the coverage ratio of BNs synthesized for a given (PKN + TS). Points are jittered		
0			1
\|			- -
-	\cdots -		
		- -	*

Evaluation - Quality of the Synthesised BNs

REVEAL Best-Fit \quad caspo-TS \quad ASKeD-BN
schematic representation of the coverage ratio of BNs synthesized for a given (PKN + TS).

Points are jittered

Evaluation - Quality of the Synthesised BNs

caspo-TS	010	\rightarrow	*	\rightarrow	011	\rightarrow	*			*	\rightarrow		
REVEAL \& Best-Fit	$\begin{array}{rrrrrr} 010 \rightarrow 010 \rightarrow 010 \rightarrow 010 & \rightarrow 011 \rightarrow 011 \rightarrow 011 & \rightarrow 100 \rightarrow 100 \rightarrow 100 \rightarrow 001 \rightarrow 001 \rightarrow \\ 010 & \rightarrow & \rightarrow 11 & \rightarrow & 100 & \rightarrow \end{array} 001 \text { 011 }$												
coverage													
t	1	2	3	4 5		6	7	8	9	10	11	12	
A													
B													
C													

Evaluation - Quality of the Synthesised BNs

| REVEAL | Best-Fit
 schematic representation of the coverage ratio
 of BNs synthesized for a given (PKN + TS).
 Points are jittered |
| :--- | :--- | :--- |
| 0 | ASKeD-BN |

Evaluation - Comparison Runtime

336 experiments at total
\# fails
REVEAL: 240, Best-Fit: 64, caspo-TS: 20, ASKeD-BN: 0

Conclusion

Contribution:

- ASKeD-BN: Automatic Synthesis of Boolean Networks constrained in their structure (PKN knowledge) and their dynamics (TS data)
- Approach free of strong / restraining assumptions
- Formulation as a logic program (Answer-Set Programming)
- ASKeD-BN gives good results

All data + code available at:
https://gitlab.inria.fr/avaginay/OLA2021
Work in progress:

- Apply ASKeD-BN on PKN and TS directly extracted from existing biological models (ODE-like)

The end. Any question?

Automatic Synthesis of Boolean Networks from Biological Knowledge and Data Athénaïs Vaginay, Taha Boukhobza, and Malika Smaïl-Tabbone International Conference on Optimization and Learning

ola 2021

21-23 June 2021, Catania, Italia
https://ola2021.sciencesconf.org/data/pages/book_ola2021_en.pdf

Annexe

Evaluation on Real Datasets

yeast
4 components, 7 transitions

- REVEAL fails
- Best-Fit lacks consistency
- caspo-TS and ASKeD-BN find good BNs
- caspo-TS returns more BNs, some of them with poor coverage
\rightarrow ASKeD-BN returns a small number of BN, with good coverage and low variance \checkmark

Synthetic Data - Complexity

system	\# node	\# edges	$\#$hyperedges (caspo-TS)
raf	3	8	17
randomnet_n7k3	7	35	125
xiao_wnt5a	7	12	19
arellano_rootstem	9	18	60
davidich_yeast	10	27	117
faure_cellcycle	10	35	194

Synthetic Data - Comparison of the \# of BN Returned

336 experiments at total including 42 with the ARN* setting.

- REVEAL often fails
- REVEAL and Best-Fit return a lots of BNs which are not respecting the PKN
- caspo-TS returns in average between 5 and 7 times more BNs than ASKeD-BN (depending on the setting)
*: ARN $=$ Asyn. update scheme, with repetition and noise

Synthetic data, ARN setting - Quality of the BNs

Evaluation - Comparison time and RAM

	yest		
method	running time (s)	cputime (s)	max_rss (MB)
REVEAL	1.0095	0.55	72.97
Best-Fit	1.4069	1.10	92.77
caspo-TS	24.6545	12.91	183.08
ASKeD-BN	5.4209	4.90	186.80

A. thaliana

method	running time (s)	cputime (s)	max_rss (MB)
caspo-TS	7.0394	1.85	139.93
ASKeD-BN	8.5820	8.19	163.38

observed in general:

- ASKeD-BN faster in general, but does not scale
- caspo-TS is using less RAM

ASKeD-BN: Hard Constraints

"A activates C"
"B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

ASKeD-BN: Hard Constraints

"A activates C"
"B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

For A:
3 choices:
A := C
A $:=0$
A :=1
but not:
$\mathrm{A}:=\mathrm{B}$
$A:=\neg C$

ASKeD-BN: Hard Constraints

"A activates C"
"B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

For A:
3 choices:
A := C
A $:=0$
A :=1
but not:
$\mathrm{A}:=\mathrm{B}$
$A:=\neg C$

For B:
16 choices:
$\mathrm{B}:=\mathrm{B} \wedge \neg \mathrm{C}$
$B:=(B \wedge \neg C) \vee(\neg B \wedge C) ;$
$B:=0$
B:=1
but not:
B :=A

ASKeD-BN: Hard Constraints

"A activates C"
"B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

For A:
3 choices:
A := C
A $:=0$
A :=1
but not:
A :=B
$A:=\neg C$

For B:
16 choices:
$\mathrm{B}:=\mathrm{B} \wedge \neg \mathrm{C}$
$B:=(B \wedge \neg C) \vee(\neg B \wedge C) ;$
$\mathrm{B}:=0$
$B:=1$
but not:
$\mathrm{B}:=\mathrm{A}$

For C:
6 choices:
$C:=\neg C$
$C:=A$
..
C : = 0
$C:=1$
but not:
$C:=A \wedge B$

ASKeD-BN: Hard Constraints

"A activates C"
"B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

For A:
3 choices:
A := C
A $:=0$
A :=1
but not:
A :=B
$A:=\neg C$

For B:
16 choices:
$\mathrm{B}:=\mathrm{B} \wedge \neg \mathrm{C}$
$B:=(B \wedge \neg C) \vee(\neg B \wedge C) ;$
$\mathrm{B}:=0$
$B:=1$
but not:
$\mathrm{B}:=\mathrm{A}$

For C:
6 choices:
$C:=\neg C$
$C:=A$
..
C : = 0
$C:=1$
but not:
$C:=A \wedge B$

ASKeD-BN: Hard Constraints

"A activates C"
"B interacts with itself"
"C activates A"
"C interacts with B"
"C inhibits itself"

For A:
3 choices:
A := C
A $:=0$
A :=1
but not:
A :=B
$A:=\neg C$

For B:
16 choices:
$\mathrm{B}:=\mathrm{B} \wedge \neg \mathrm{C}$
$B:=(B \wedge \neg C) \vee(\neg B \wedge C) ;$
$B:=0$
$B:=1$
but not:
$\mathrm{B}:=\mathrm{A}$

For C:
6 choices:
$C:=\neg C$
$C:=A$
..
C : = 0
$C:=1$
but not:
$C:=A \wedge B$

ASKeD-BN: Soft constraints - Example 1

$010 \rightarrow 011+100 \rightarrow 001$																		
t	1	2	34	5	6	7	8	9	10				15	16	17	18	19	20
A	0	3	713	20	30	49	61	100	63	362	252		1	1	3	0	0	
B	100		6457	54	53	51	49	45	37		2822		14	12	9	5	2	0
C	0		3642	60	75	54	44	38		607	7288							

\mathscr{U} set of unexplained timesteps
Mean Absolute Error $\mathrm{MAE}_{\mathrm{X}}=\frac{\sum_{t^{\prime} \in \mathscr{U}}\left|\theta_{\mathrm{X}}-x_{t^{\prime}}\right|}{T}$

$$
\begin{array}{ccc}
a_{t+1}=c_{t} & \checkmark & a_{t+1}=0 \\
\emptyset & & \{8\} \\
0 & \checkmark & 0.55
\end{array}
$$

ASKeD-BN: Soft constraints - Example 2

\mathscr{U} set of unexplained timesteps
Mean Absolute Error $\mathrm{MAE}_{\mathrm{X}}=\frac{\sum_{t^{\prime} \in \mathscr{U}}\left|\theta_{\mathrm{X}}-x_{t^{\prime}}\right|}{T}$

How does the PKN help reducing the search space?

Without information

$2^{2^{3}}=256$ candidates for each components
$\rightarrow 256 \times 256 \times 256=16777216$ candidate BNs

How does the PKN help reducing the search space?

With PKN

directions only (REVEAL \& Best-Fit)

$\rightarrow 4 \times 16 \times 16=1024$
candidate BNs
direction + signs
(caspo-TS \& ASKeD-BN)

	A	B	C
all	3	16	6
monotonous	3	14	6

$\rightarrow 3 \times 16 \times 6=288$
candidate BNs
including 252 locally partial-monotonous.

