

Athénaïs Vaginay, Taha Boukhobza, Malika Smaïl-Tabbone

Jun 21-23 2021

Modeling Biological Systems with Boolean Networks

Boolean Networks (BN) are:

- qualitative formalism, well-suited for biological systems
- built from experimental data and knowledge from literature
- the automatic synthesis of BNs from biological data and knowledge is still a challenge

from Novak et al. 2001

$$\mathcal{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_{t} & \text{in} \\ f_{\mathsf{B}} : b_{t+1} = b_{t} \land \neg c_{t} & n \\ f_{\mathsf{C}} : c_{t+1} = \neg c_{t} & \mathsf{BN} \end{cases}$$

$$\mathcal{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

$$\mathcal{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

$$\mathcal{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \wedge \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t & \text{``C activates A''} \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t & \text{status of child component at } t+1 \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t & = \mathsf{f}(\mathsf{status of parents components at } t) \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t & \end{cases}$$

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t & \text{status of child component at } t+1 \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t & = \mathsf{f}(\mathsf{status of parents components at } t) \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t & \end{cases}$$

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t & \text{status of child component at } t+1 \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t & = \mathsf{f}(\mathsf{status of parents components at } t) \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t & \text{status of child component at } t+1 \\ f_{\mathsf{B}} : b_{t+1} = b_t \wedge \neg c_t & = \mathsf{f}(\mathsf{status of parents components at } t) \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t & \end{cases}$$

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t & \text{status of child component at } t+1 \\ f_{\mathsf{B}} : b_{t+1} = b_t \wedge \neg c_t & = \mathsf{f}(\mathsf{status of parents components at } t) \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t & \end{cases}$$

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

Interaction Graph (IG)

nodes: components of the BN edges: influences + polarity

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

Interaction Graph (IG)

nodes: components of the BN edges: influences + polarity

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} &= c_t \\ f_{\mathsf{B}} : b_{t+1} &= b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} &= \neg c_t \end{cases}$$

Interaction Graph (IG)

nodes: components of the BN edges: influences + polarity

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

Interaction Graph (IG)

nodes: components of the BN edges: influences + polarity

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

State Transition Graph (STG)

nodes: configurations of the BN (vector $\in \mathbb{B}^n$) e.g. 001, 010, 111, . . .

edge from c to c' if c' = f(c)

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

C

А

В

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} &= c_t \\ f_{\mathsf{B}} : b_{t+1} &= b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} &= \neg c_t \end{cases}$$

"A activates C"

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

- "A activates C" "B interacts with itself"
- "C activates A"
- "C interacts with B"
- "C inhibits itself"

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

"A activates C" "B interacts with itself" "C activates A" "C interacts with B" "C inhibits itself"

"A activates ("

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

$$= \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

"A activates C" "B interacts with itself" "C activates A" "C interacts with B" "C inhibits itself"

 \mathscr{B}

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

Prior Knowledge Network (PKN) Super-set of influences allowed

- "A activates C"
- "B interacts with itself"
- "C activates A"
- "C interacts with B"
- "C inhibits itself"

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

Prior Knowledge Network (PKN) Super-set of influences allowed

- "A activates C"
- "B interacts with itself"
- "C activates A"
- "C interacts with B"
- "C inhibits itself"

Multivariate Time Series (TS)

t	1	2	3	4	5	6	7	8	9	10	11	12	13	
A	0	3	7	13	20	30	49	61	100	63	36	25	2	
В	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0	27	36	42	60	75	54	44	38	48	60	72	88	

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

Prior Knowledge Network (PKN) Super-set of influences allowed

- "A activates C"
- "B interacts with itself"
- "C activates A"
- "C interacts with B"
- "C inhibits itself"

Multivariate Time Series (TS)

t	1	2	3	4	5	6	7	8	9	10	11	12	13	
A	0	3	7	13	20	30	49	61	100	63	36	25	2	
в	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0	27	36	42	60	75	54	44	38	48	60	72	88	

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

Prior Knowledge Network (PKN) Super-set of influences allowed

- "A activates C"
- "B interacts with itself"
- "C activates A"
- "C interacts with B"
- "C inhibits itself"

Multivariate Time Series (TS)

t	1	2	3	4	5	6	7	8	9	10	11	12	13	
A	0	3	7	13	20	30	49	61	100	63	36	25	2	
B	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0	27	36	42	60	75	54	44	38	48	60	72	88	

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

Prior Knowledge Network (PKN) Super-set of influences allowed

- "A activates C"
- "B interacts with itself"
- "C activates A"
- "C interacts with B"
- "C inhibits itself"

Multivariate Time Series (TS)

t	1	2	3	4	5	6	7	8	9	10	11	12	13	
A	0	3	7	13	20	30	49	61	100	63	36	25	2	
В	100	86	64	57	54	53	51	49	45	37	33	28	22	
C	0	27	36	42	60	75	54	44	38	48	60	72	88	

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

Prior Knowledge Network (PKN) Super-set of influences allowed

- "A activates C"
- "B interacts with itself"
- "C activates A"
- "C interacts with B"
- "C inhibits itself"

Multivariate Time Series (TS)

t	1	2	3	4	5	6	7	8	9	10	11	12	13	
A	0	3	7	13	20	30	49	61	100	63	36	25	2	
В	100	86	64	57	54	53	51	49	45	37	33	28	22	
С	0	27	36	42	60	75	54	44	38	48	60	72	88	

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

Prior Knowledge Network (PKN) Super-set of influences allowed

- "A activates C"
- "B interacts with itself"
- "C activates A"
- "C interacts with B"
- "C inhibits itself"

Multivariate Time Series (TS)

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

Prior Knowledge Network (PKN) Super-set of influences allowed

- "A activates C"
- "B interacts with itself"
- "C activates A"
- "C interacts with B"
- "C inhibits itself"

Multivariate Time Series (TS)

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

Prior Knowledge Network (PKN) Super-set of influences allowed

- "A activates C"
- "B interacts with itself"
- "C activates A"
- "C interacts with B"
- "C inhibits itself"

Multivariate Time Series (TS)

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

Prior Knowledge Network (PKN) Super-set of influences allowed

- "A activates C"
- "B interacts with itself"
- "C activates A"
- "C interacts with B"
- "C inhibits itself"

Multivariate Time Series (TS)

Boolean Networks – Synthesis from Knowledge and Data

$$\mathscr{B} = \begin{cases} f_{\mathsf{A}} : a_{t+1} = c_t \\ f_{\mathsf{B}} : b_{t+1} = b_t \land \neg c_t \\ f_{\mathsf{C}} : c_{t+1} = \neg c_t \end{cases}$$

Prior Knowledge Network (PKN) Super-set of influences allowed

- "A activates C"
- "B interacts with itself"
- "C activates A"
- "C interacts with B"
- "C inhibits itself"

Multivariate Time Series (TS)

Get the best coverage possible

Automatic synthesis of BNs from a Prior Knowledge Network (PKN) and a multivariate Time Series (TS) = hard problem (combinatorial explosion)

REVEAL Best-Fit caspo-TS

Automatic synthesis of BNs from a Prior Knowledge Network (PKN) and a multivariate Time Series (TS) = hard problem (combinatorial explosion)

	PKN	TS	assumptions
REVEAL	unsigned	binarized	time unit $= 1$
Best-Fit	unsigned	binarized	time unit $= 1$
caspo-TS	signed	numeric	local partial-monotony

Automatic synthesis of BNs from a Prior Knowledge Network (PKN) and a multivariate Time Series (TS) = hard problem (combinatorial explosion)

	PKN	TS	assumptions
REVEAL	unsigned	binarized	time unit $= 1$
Best-Fit	unsigned	binarized	time unit $= 1$
caspo-TS	signed	numeric	local partial-monotony
ASKeD-BN	signed	both	

Automatic synthesis of BNs from a Prior Knowledge Network (PKN) and a multivariate Time Series (TS) = hard problem (combinatorial explosion)

	PKN	ΤS	assumptions
REVEAL	unsigned	binarized	time unit $= 1$
Best-Fit	unsigned	binarized	time unit $= 1$
caspo-TS	signed	numeric	local partial-monotony
ASKeD-BN	signed	both	

Similar principles:

- 1. delimitation of the search space using the PKN as constraint
- 2. optimization of a criteria which measure the adequacy of the synthesized BNs with the TS (coverage)

Automatic synthesis of BNs from a Prior Knowledge Network (PKN) and a multivariate Time Series (TS) = hard problem (combinatorial explosion)

	PKN	ΤS	assumptions
REVEAL	unsigned	binarized	time unit $= 1$
Best-Fit	unsigned	binarized	time unit $= 1$
caspo-TS	signed	numeric	local partial-monotony
ASKeD-BN	signed	both	

Similar principles:

- 1. delimitation of the search space using the PKN as constraint
- 2. optimization of a criteria which measure the adequacy of the synthesized BNs with the TS (coverage)

Automatic synthesis of BNs from a Prior Knowledge Network (PKN) and a multivariate Time Series (TS) = hard problem (combinatorial explosion)

	PKN	ΤS	assumptions
REVEAL	unsigned	binarized	time unit $= 1$
Best-Fit	unsigned	binarized	time unit $= 1$
caspo-TS	signed	numeric	local partial-monotony
ASKeD-BN	signed	both	

Similar principles:

- 1. delimitation of the search space using the PKN as constraint
- 2. optimization of a criteria which measure the adequacy of the synthesized BNs with the TS (coverage)

Multiple optimal solutions are all returned

Formulation the BN synthesis problem as a logic program with the Answer Set Programming (ASP) framework

Formulation the BN synthesis problem as a logic program with the Answer Set Programming (ASP) framework

Main parts of the logic program:

- 1. generates all the possible candidate functions
- 2. removes the ones that do not respect the PKN
- 3. acts like an exhaustive evaluation of all the candidates and returns the *parsimonious* candidates which explain best the *binarized* observations from the given time series

Formulation the BN synthesis problem as a logic program with the Answer Set Programming (ASP) framework

Main parts of the logic program:

- 1. generates all the possible candidate functions
- 2. removes the ones that do not respect the PKN
- 3. **acts like** an exhaustive evaluation of all the candidates and returns the *parsimonious* candidates which explain best the *binarized* observations from the given time series

ASP solvers are designed to solve hard combinatorial satisfaction problem. They prune the search space *efficiently* (heuristic from SAT solvers).

10 / 15

Datasets for Evaluation

2 real datasets:

Z redi udidsets.				
£t.	PKN		TS	
System	# nodes	# edges	# time steps	# transitions
yeast (cell cycle)	4	28	14	6
A. thaliana (circadian clock)	5	8	50	11

6 synthetic datasets:

Various complexity: from 3 to 10 nodes.

Various conditions: synch. or async. update scheme, with or without repetition, with or without noise

336 experiments at total including 42 with the ARN setting.

Datasets for Evaluation

2 real datasets:

Z redi udidsets.				
£t.	PKN		TS	
System	# nodes	# edges	# time steps	# transitions
yeast (cell cycle)	4	28	14	6
A. thaliana (circadian clock)	5	8	50	11

6 synthetic datasets:

Various complexity: from 3 to 10 nodes.

Various conditions: synch. or async. update scheme, with or without repetition, with or without noise ("ARN")

336 experiments at total including 42 with the ARN setting.

Evaluation – Quality of the Synthesised BNs

Evaluation - Comparison Runtime

Conclusion

Contribution:

- ASKeD-BN: Automatic Synthesis of Boolean Networks constrained in their structure (PKN knowledge) and their dynamics (TS data)
- Approach free of strong / restraining assumptions
- Formulation as a logic program (Answer-Set Programming)
- ASKeD-BN gives good results

All data + code available at:

https://gitlab.inria.fr/avaginay/OLA2021

Work in progress:

 Apply ASKeD-BN on PKN and TS directly extracted from existing biological models (ODE-like)
The end. Any question?

Automatic Synthesis of Boolean Networks from Biological Knowledge and Data Athénaïs Vaginay, Taha Boukhobza, and Malika Smaïl-Tabbone

International Conference on Optimization and Learning

ola 2021

21-23 June 2021, Catania, Italia

https://ola2021.sciencesconf.org/data/pages/book_ola2021_en.pdf

Annexe

A. thaliana 5 components, 10 transitions

 \rightarrow ASKeD-BN returns a small number of BN, with good coverage and low variance \checkmark

Synthetic Data – Complexity

system	# node	# edges	$\# \frac{\text{hyperedges}}{(\text{caspo-TS})}$
raf	3	8	17
randomnet_n7k3	7	35	125
xiao_wnt5a	7	12	19
arellano rootstem	9	18	60
davidich_yeast	10	27	117
faure cellcycle	10	35	194

Synthetic Data – Comparison of the # of BN Returned

550 experiments at total meluding +2 with the ANN setting.													
		REVE	EAL	Best-	Fit	caspo-TS	ASKeD-BN						
	setting	before filter	after filter	before filter	after filter	1							
# failing xp	all	230	240	0	64	20	0						
# total returned BNs	all	100 677 500	406	100 678 198	724	8481	1210						
# total returned BNs	ARN	3	3	51	35	720	85						

336 experiments at total including 42 with the ARN* setting

REVEAL often fails

- REVEAL and Best-Fit return a lots of BNs which are not respecting the PKN
- caspo-TS returns in average between 5 and 7 times more BNs than ASKeD-BN (depending on the setting)
- *: ARN = Asyn. update scheme, with repetition and noise

Synthetic data, ARN setting – Quality of the BNs

Evaluation - Comparison time and RAM

	ує	est	
method	running time (s)	cputime (s)	max_rss (MB)
REVEAL	1.0095	0.55	72.97
Best-Fit	1.4069	1.10	92.77
caspo-TS	24.6545	12.91	183.08
ASKeD-BN	5.4209	4.90	186.80
	A th	aliana	

A. thaliana												
method	running time (s)	cputime (s)	max_rss (MB)									
caspo-TS	7.0394	1.85	139.93									
ASKeD-BN	8.5820	8.19	163.38									

observed in general:

- ▶ ASKeD-BN faster in general, but does not scale
- caspo-TS is using less RAM

"A activates C" "B interacts with itself" "C activates A" "C interacts with B" "C inhibits itself"

For A:

3 choices:

A := C

 $\mathsf{A}:=0$

 $\mathsf{A} := 1$

but not:

 $\begin{array}{l} \mathsf{A} := \mathsf{B} \\ \mathsf{A} := \neg \mathsf{C} \end{array}$

3 choices:	16 choices:
A := C	$B:=B\wedge\negC$
A := 0	$B := (B \land \neg C) \lor (\neg B \land C);$
A := 1	•••
but not:	B := 0
	B := 1
A := D	
$A := \neg C$	but not:
	B := A

For A:	For B:	For C:
3 choices: A := C A := 0	16 choices: $\begin{split} B &:= B \land \neg C \\ B &:= (B \land \neg C) \lor (\neg B \land C); \end{split}$	6 choices: $C := \neg C$ C := A
A := 1 but not: A := B	B := 0 B := 1	C := 0 C := 1
$A:=\negC$	but not: B := A	but not: $C := A \land B$

For A:	For B:	For C:
3 choices: A := C A := 0	16 choices: $B := B \land \neg C$ $B := (B \land \neg C) \lor (\neg B \land C);$	6 choices: $C := \neg C$ C := A
A := 1 but not: A := B	B := 0 B := 1	C := 0 C := 1
$A:=\negC$	but not: B := A	but not: $C := A \wedge B$

For A:	For B:	For C:
3 choices: A := C A := 0	16 choices: $B := B \land \neg C$ $B := (B \land \neg C) \lor (\neg B \land C);$	6 choices: C := ¬C C := A
A := 1 but not: A := B	B := 0 B := 1	C := 0 C := 1
$A:=\negC$	but not: B := A	but not: $C := A \wedge B$

ASKeD-BN: Soft constraints — Example 1

		C)10	_	\rightarrow	011	_	\rightarrow	100	-	\rightarrow	00	1							
t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	0	3	7	13	20	30	49	61	100	63	36	25	2	3	1	1	3	0	0	0
В	100	86	64	57	54	53	51	49	45	37	33	28	22	19	14	12	9	5	2	0
C	0	27	36	42	60	75	54	44	38	48	60	72	88	90	100	100	100	100	100	100

 \mathscr{U} set of unexplained timesteps Mean Absolute Error MAE_X = $\frac{\sum_{t' \in \mathscr{U}} |\theta_{\mathbf{X}} - x_{t'}|}{T}$

$$\begin{array}{ccc} a_{t+1} = c_t & \checkmark & a_{t+1} = 0 \\ \mathscr{U} & \emptyset & & \{8\} \\ \mathsf{MAE} & 0 & \checkmark & 0.55 \end{array}$$

ASKeD-BN: Soft constraints — Example 2

		C	010	_	\rightarrow	011	_	\rightarrow	100	-	\rightarrow	00	1							
t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	0	3	7	13	20	30	49	61	100	63	36	25	2	3	1	1	3	0	0	0
В	100	86	64	57	54	53	51	49	45	37	33	28	22	19	14	12	9	5	2	0
C	0	27	36	42	60	75	54	44	38	48	60	72	88	90	100	100	100	100	100	100

 \mathscr{U} set of unexplained timesteps Mean Absolute Error MAE_X = $\frac{\sum_{t' \in \mathscr{U}} |\theta_{\mathbf{X}} - x_{t'}|}{T}$

$$\begin{array}{cccc} b_{t+1} = b_t \wedge \neg \mathsf{c}_t & \checkmark & b_{t+1} = (b_t \wedge \neg c_t) \vee (\neg b_t \wedge c_t) \\ & & \emptyset & & \\ \mathsf{MAE} & 0 & \checkmark & 0 & \checkmark \\ \# \text{ influences} & 2 & \checkmark & 4 \end{array}$$

How does the PKN help reducing the search space?

 $\rightarrow 256 \times 256 \times 256 = 16777216$ candidate BNs

How does the PKN help reducing the search space?

With PKN

directions only (REVEAL & Best-Fit)

 $\rightarrow 4 \times 16 \times 16 = 1024$ candidate BNs

direction + signs (caspo-TS & ASKeD-BN)

including 252 locally partial-monotonous.