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How is it link to what I explain you last time?

boolean networks = network of boolean automata

I automata

I automata configuration

I system configuration

I influence

I local update functions

I updating scheme

I transition graph

I reachability
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On network of n boolean automata — formaly

in the boolean world:
B = {0, 1}

a local update function is associated to each agent of the system
B = (V, fi : Bki≤n → B ∀i ∈ V )

logical function synthesis, using constraints about

I the definition domain of the function (hard constraint)

I + specification abouts their behavior (soft constraint to be
optimized).
TODO: explain why soft (orally?)
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Goal:
Defining the search space

I big enough to contain all the possible solutions

I small enought to avoid unecessary work
(no redundant solution)

I in a form that is easy to understand

I . . .
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1st attempts. . .

. . . all the possible logic formulas?
(= all the expressions built connecting the given input nodes with
logical connectors)
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Logical operators and their notation

functionally complete:

I ¬a: “not a” → a has to be False

I a ∨ b: “a or b”

I a ∧ b: “a and b”

abbreviations → not absolutely necessary:

I a⇒ b: “a implies b”

I a⇔ b: “equivalent”

I True

I False

I a⊕ b: “exclusive or”, “xor”

I a ↑ b “nand”

I a ↓ b: “nor”

I . . .
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Quick biological examples

in the boolean world:
B = {0, 1}

a local update function is associated to each agent of the system
B = (V, fi : Bki≤n → B ∀i ∈ V )

I “a activates x” → xt+1 = f(at) = g(at, bt)

I “both a and b can activate x” → x

t+1

= f(a

t

, b

t

)

Note: from now on, I will omit the time specififications
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1st attempt: all the possible logical formulas

Problem:

I For every formula, there is an infinity of other equivalent
formula.
Example:

p ≡ p ∧ p ≡ p ∧ p ∧ p ≡ . . .

Solution: use a normal form

I modulo some restriction in the synthax, a normal form provide
you with a standardized form.

I every formula can be written in an equivalent normal form.

I two formulas having the same normal form are
equivalent.

→ normality is REALLY useful in this context! :D
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It exists a lot of normal forms:

I Negation normal form

I Conjunctive normal form

I Disjunctive normal form

I Algebraic normal form

I Prenex normal form

I Skolem normal form

I Blake canonical form

I . . .

Why using a disjunctive normal form?
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Vocabulary + DNF definition

I propositional variable: the basic unit of a formula.
Examples: a, b.

I litteral: either a propositional variable,
or the negation of a propositional variable.
Examples: a, ¬a

I cube (or conjunctive clause): conjunction of litterals.
Examples: True (conjunction of zero literals), a, a ∧ a, a ∧ b.

I a formula in disjunctive normal form (DNF) is a disjunction of
cubes. Example:

(a ∧ b ∧ c) ∨ (a ∧ ¬a ∧ b) ∨ a
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Another restriction : satisfiable DNF only

Theorem: formula in DNF form is satifiable if and only if there is
at least one cube in which there is not a variable and its negation.

Examples:
a is satisfiable
a ∧ ¬a is not satisfiable
(a ∧ ¬a) ∨ b is satisfiable (≡ b ).

11 / 30



Why are DNF so useful for us? — Reason n° 1

Because straitforward interpretation for our mind:
a satisfiable DNF is just a list of the combination of inputs where
the output happened to be True.

Truth table (from dynamical constraints) :

a b x = f(a, b)

0 0 0
0 1 0
1 0 0
1 1 1

Corresponding DNF :

a ∧ b
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Why are DNF so useful for us? — Reason n° 2
Because easy to represent. → hypercubical representation

Truth table of the DNF a ∧ b:

a b x = f(a, b)

0 0 0
0 1 0
1 0 0
1 1 1

Its hypercubical representation:

0 1
0

1

a

b
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Hypercubical representation: another example

Truth table of the DNF (a ∧ ¬b) ∨ (¬a ∧ b) (xor):

a b x = f(a, b)

0 0 0
0 1 1
1 0 1
1 1 0

Its hypercubical representation:

0 1
0

1

a

b
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2nd attempt: use DNF

Can 2 different DNF formula be equivalent?

Yes! Their difference can be in the order of litterals or the order of
cubes:

(a ∧ b) ∨ (¬c ∧ ¬b)

≡(b ∧ a) ∨ (¬c ∧ ¬b)

≡(¬c ∧ ¬b) ∨ (b ∧ a)

15 / 30



3rd attempt:

Can 2 different DNF formula with more difference that simply the
order of cubes of the order of litterals be equivalent?

Yes! Because of the redundancy of subsumed cubes:

(a ∧ b) ≡ (a ∧ b) ∨ (a ∧ b ∧ c)

16 / 30



Subsomption, kézako ?

A cube c1 subsumes a cube c2 if all the literals in c1 are in c2.

A cube c1 subsumes a cube c2 if c1 is ”included” in c2, putting
aside the order of litteral and the eventual repetition.

I a ∧ ¬b subsumes a ∧ ¬b ∧ c

I a ∧ ¬b subsubes a ∧ ¬b ∧ c ∧ c.

17 / 30



Redundancy of subsumed clause

Subsumed cubes are redundant.
Let c1, . . . cn. If cj subsumes ci, for i 6= j, then:
c1 ∨ . . .∨ ci−1 ∨ ci ∨ ci+1 ∨ . . .∨ cn ≡ c1 ∨ . . .∨ ci−1 ∨ ci+1 ∨ . . .∨ cn

Example:

(a ∧ ¬b) ∨(¬a ∧ b) ∨(a ∧ ¬b︸ ︷︷ ︸ ∧ c ∧ ¬d)

≡(a ∧ ¬b) ∨(¬a ∧ b)
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4th attempt:

Can 2 different DNF formula with more difference than simply the
order of cubes or the order of literals, and where none of the cube
subsume another cube in the same formula be different?

Yes! For example, both:
¬a ∨ (a ∧ ¬b) and ¬b ∨ (b ∧ ¬a)

are equivalent to
(¬a ∧ b) ∨ (¬a ∧ ¬b) ∨ (a ∧ ¬b)

19 / 30



Formal proof? No, thanks. . .
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Visual intuition of the proof ? Yes, please: :D

0 1
0

1

a

b

¬x
∨(x ∧ ¬y)

0 1
0

1

a

b

¬y
∨(¬x ∧ y)

0 1
0

1

a

b

¬x ∧ ¬y
∨(x ∧ ¬y)
∨(¬x ∧ y)
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Their is another...

... DNF formula that is equivalent. And even shorter!

¬x ∧ ¬y

22 / 30



Illustration

0 1
0

1

a

b

¬a ∧ ¬b
∨(a ∧ ¬b)
∨(¬a ∧ b)

0 1
0

1

a

b

¬b
∨(¬a)
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About minimal DNF

Minimal DNF: smallest DNF among all the equivalent DNFs.

Length of a formula: the number of litteral
Example:
(a ∧ ¬b) ∨ (a ∧ c): length = 4
a ∧ a ∧ a ∧ a ∧ a: length = 5

Example of min DNF:
a is a minimal DNF, but a ∧ a is not.

24 / 30



About minimal DNF

Minimal DNF: smallest DNF among all the equivalent DNFs.

Length of a formula: the number of litteral
Example:
(a ∧ ¬b) ∨ (a ∧ c): length = 4
a ∧ a ∧ a ∧ a ∧ a: length = 5

Example of min DNF:
a is a minimal DNF, but a ∧ a is not.

24 / 30



About minimal DNF

Minimal DNF: smallest DNF among all the equivalent DNFs.

Length of a formula: the number of litteral
Example:
(a ∧ ¬b) ∨ (a ∧ c): length = 4
a ∧ a ∧ a ∧ a ∧ a: length = 5

Example of min DNF:
a is a minimal DNF, but a ∧ a is not.

24 / 30



5th attempt: min DNF

Are min DNF unique, modulo order of literals and order of cubes?

mmh... yes and no
Example: There is several way of minimizing this DNF:

(a ∧ ¬b) ∨ (¬a ∧ b) ∨ (b ∧ ¬c) ∨ (¬b ∧ c)

I (a ∧ ¬b) ∨ (b ∧ ¬c) ∨ (¬a ∧ c)

I (¬a ∧ b) ∨ (¬b ∧ c) ∨ (a ∧ ¬c)

But not the same biological interpretation
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Recipie to generate all the possible min DNF of n boolean
variables

1. Use the topological constraint to have the set of possible
inputs

{a,¬a, b,¬b, c,¬c} → {a, b, c} = E

2. Get all the possible cubes → compute the powerset of E:

P(E) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, E}

|P(E)| = 2|E| = 23 = 8

3. Remove the impossible cubes : l ∧ ¬l
4. Order (partially) the cubes by their inclusion : a ⊂ ab ⊂ abc

5. Enumerate all the antichains

(powerset = the set of all possible subsets)
(antichain = subset such that any two distinct element are
incomparable)
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a

a, b

cb

a, c b, c

empty

a, b, c
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a

a, b

b−a

−a, b

a,−a, b

a,−a

empty
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State of our current ASP implementation

I Difficulties to encode the antichain relation

Workarround:

I some minimisation rules encoded in ASP.

I the search space is all the DNF that pass these filters.
I at the end, we minimise the solutions with an external

program, and remove redundant solutions.

I Famous exact algorithm from Quine and McCluskey

(broken in
Python)

I Famous heuristic from Berckley University : Expresso
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Thanks for your attention. . .
Any questions? :)

+ thanks to Justine and Alexandre for having discuss the link between DNF
and partially ordered sets
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References I

Poly de cours ”outils logiques” par Ralf Treinen
https://www.irif.fr/~kesner/enseignement/ol3/poly.pdf

On non unicity of min DNF : https://math.stackexchange.c
om/questions/321285/is-there-a-unique-minimal-expres

sion-for-every-boolean-function/321326
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min DNF not unique

There is several way of minimizing this DNF:

(¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b ∧ c)

I (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ c)

I (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (b ∧ c)

I (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b)
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Functional completness of logical operators

A set S of logical connector is functionaly complete if for all
natural number n, and all function f :

f : {0, 1} × ...× {0, 1}︸ ︷︷ ︸
n times

→ {0, 1}

one can find a propositional formula p containing only the logical
connectors from S, such that p ”rzalize” f and
V (p) ⊆ {x1, . . . , xn}, i.e. such that:

???

for all boolean values b1, . . . , bn ∈ {0, 1}
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Functional completness of logical operators

A set of operator is functionaly complete if it allows the expression
of all the possible boolean formulas.

Examples:

I {¬,∧,∨}
I {¬,∧}
I {¬,∨}
I {¬,⇔}
I {↑}

But not:

I {∧,∨}
I {⇔}

6 / 21



Hypercubical representation

Figures stolen from chapter 7 (Tabular minimization and multiple output circuits) of Introduction to switching
theory and logical design, by Hill and Peterson.
https://archive.org/details/IntroductionToSwitchingTheoryLogicpage/n149
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Length explosion
The transformation of a formula in its DNF form can make the
length grow exponentially.

For example, the DNF of the formula:

(x1 ∨ y1) ∧ (x2 ∨ y2)

is:
(x1 ∧ x2)

∨(x1 ∧ y2)

∨(y1 ∧ x2)

∨(y1 ∧ y2)

(x1∨ y1)∧ (x2∨ y2)∧ (x3∨ y3)

is:
(x1 ∧ x2 ∧ x3)

∨(x1 ∧ x2 ∧ y3)

∨(x1 ∧ y2 ∧ x3)

∨(x1 ∧ y2 ∧ y3)

∨(y1 ∧ x2 ∧ x3)

∨(y1 ∧ x2 ∧ y3)

∨(y1 ∧ y2 ∧ x3)

∨(y1 ∧ y2 ∧ y3)
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Length explosion — generality

Generally, puting a formula of the form:

(x1 ∨ y1) ∧ (x2 ∨ y2) ∧ . . . ∧ (xn ∨ yn)

in DNF gives a formula with 2n cubes, each cubes having n
litterals.
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Neutral elements

The conjunction of zero formula is a neutral element and gives
True.

I Adding nothing to a conjunction should give us an equivalent
formula

I Analogy with the sum of no numbers is 0:
∑i=0

i=1 i = 0

The disjunction of zero formula is a neutral element and gives
False.
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Vocabulary + DNF definition — version 1

I propositional variable: the basic unit of a formula.
Example: a, b.

I litteral: either a propositional variable,
or the negation of a propositional variable.
Example: a, not a, b, not b

I cube (or conjunctive clause): either the True constant,
or the conjunction between at leat two litterals. Example:
True, a, a and a, a and b.

I a formula in disjunctive normal form (DNF) is either:
the constant False, or a cube, or a disjunction of at least two
cubes. Example:

(a ∧ b ∧ c) ∨ (a ∧ ¬a ∧ b) ∨ a
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Vocabulary + DNF definition — version 2

I propositional variable: the basic unit of a formula.
Example: a, b.

I litteral: either a propositional variable,
or the negation of a propositional variable.
Example: a, not a, b, not b

I cube (or conjunctive clause): conjunction of zero of more
litterals. Example: True, a, a and a, a and b.

I a formula in disjunctive normal form (DNF) is either:
a disjunction of zero or more cubes. Example:

(a ∧ b ∧ c) ∨ (a ∧ ¬a ∧ b) ∨ a
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Vocabulary + DNF definition — version 3

I propositional variable: the basic unit of a formula.
Example: a, b.

I litteral: either a propositional variable,
or the negation of a propositional variable.
Example: a, not a, b, not b

I cube (or conjunctive clause): conjunction of litterals.
Example: True, a, a and a, a and b.

I a formula in disjunctive normal form (DNF) is either:
a disjunction of cubes. Example:

(a ∧ b ∧ c) ∨ (a ∧ ¬a ∧ b) ∨ a
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About constraints

logical function synthesis, using constraints about

I the definition domain of the function (hard constraint)
“perhaps x activated by a, or perhaps by b, or perhaps both”
→ xt+1 = f(at); xt+1 = g(bt); xt+1 = h(at, bt)

I + specification abouts their behavior (soft constraint to be
optimized).
TODO : explain why soft (orally ?)
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Trajectory and attractors (cycles and fixed points)

C
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Methods from which I can get inspired

boolean function synthesis from biological timecourse data (and a
prior knowledge network)

I T. Akutsu, S. Miyano, S. Kuhara Identification of genetic
networks from a small number of gene expression patterns
under the Boolean network model Pacific Symposium on
Biocomputing (1999)

I REVEAL, a general reverse engineering algorithm for inference
of genetic network architectures. Liang et al. 1998

I Best-fit extension Lähdesmäki et al 2003
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Quick biological examples

I xt+1 = f(at) = at
a is an input that determine the status of x. The verity value
of the formula is the status of x at the next time step.

I xt+1 = f(at, bt) = at ∨ bt
a and b are the inputs that determine the status of x. The
verty value of the formula is the status of x at the next time
step.

Note: from now on, I will omit the time specififications
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About search spaces

1080 : number of atom in the universe
1020 : number of combination it is commonly assumed to be able
to enumerate per year on modern hardware

I Base search space : the number of combinations that each
Solution model is able to represent, regardless if those
Solutions are feasible or infeasible (= have broken hard
constraints)

I Feasible search space : all infeasible solutions (the ones that
breaks at least one hard constraints) are discarded.

You already know: the given constraints concern definition domain
and state sequence.
Is it enought ?
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How many min DNF?

muddle through enumeration by hand:

I min DNF of length 0: 2 (True, False)

I min DNF of length 1: 2 (a, ¬a)

I min DNF of length 2:
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Why do I want to talk about this?
1. because google sadly does not have an obvious answer

2. because I would like to ask the question to people who might
know, but I first need to order my thought about it

3. because some of you like hard problems, and could come up
with some useful insights

4. because if would know it, I would have a more precise idea
about the complexity of the approach I would like to use for

my main thesis project
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